
181

Original scientifi c paper

Energy Efficient and Low dynamic power
Consumption TCAM on FPGA
Sridhar Raj Sankara Vadivel, Shantha Selvakumari Ramapackiam

Department of ECE, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

Abstract: Ternary Content Addressable Memories [TCAM] based on Field Programmable Gate Arrays [FPGA] are widely used in

artificial intelligence [AI] and networking applications. TCAM macros are unavailable within the FPGA; therefore, they must be

emulated using SRAM-based memories, which require FPGA resources. Compared to state-of-the-art designs, the proposed FPGA-

based TCAM implementation will save significant resources. This methodology makes use of the Lookup Table RAMS (LUTRAMs), slice

carry-chains, and flip-flops (FF) allowing simultaneous mapping of rules and deeper pipelining respectively. The TCAM implementation

results in lower power consumption, fewer delays and lower resource utilization. It outperforms conventional FPGA-based TCAMs

in terms of energy efficiency (EE) and performance per area (PA) by at least 3.34 and 8.4 times respectively, and 56% better than

existing FPGA designs. The proposed method outperforms all previous approaches due to its low dynamic power consumption when

considering the huge size of TCAM emulation on SRAM-based FPGAs.

Keywords: TCAM; Software Defined Networking; Artificial intelligence; Networking; Quality of Service (QoS)

Energetsko učinkovit TCAM na FPGA z nizko
dinamično porabo energije
Izvleček: Ternarni vsebinsko naslovljivi pomnilniki [TCAM], ki temeljijo na poljskih programirljivih matrikah [FPGA], se pogosto

uporabljajo v aplikacijah umetne inteligence [AI] in omrežnih aplikacijah. Makroji TCAM niso na voljo v FPGA, zato jih je treba emulirati

s pomnilniki na osnovi SRAM, ki zahtevajo vire FPGA. V primerjavi z najsodobnejšimi zasnovami bo predlagana implementacija TCAM

na osnovi FPGA prihranila precej virov. Ta metodologija uporablja pomnilnike RAM s preglednicami za iskanje (LUTRAM), prenosne

verige in flip-flope (FF), ki omogočajo hkratno preslikavo pravil oziroma poglobljeno vodenje. Izvedba TCAM omogoča manjšo porabo

energije, manjše zakasnitve in manjšo izkoriščenost virov. V smislu energetske učinkovitosti (EE) in zmogljivosti na površino (PA)

presega običajne TCAM-e na osnovi FPGA za vsaj 3,34- oziroma 8,4-krat in je za 56 % boljša od obstoječih zasnov FPGA. Predlagana

metoda presega vse prejšnje pristope zaradi nizke dinamične porabe energije ob upoštevanju ogromne velikosti emulacije TCAM na

FPGA na osnovi SRAM

Ključne besede: TCAM; programsko definirano omrežje; umetna inteligenca; omrežje; kakovost storitev (QoS)

* Corresponding Author’s e-mail: sridhars@mepcoeng.ac.in, rshantha@mepcoeng.ac.in

Journal of Microelectronics,
Electronic Components and Materials
Vol. 52, No. 3(2022), 181 – 189

https://doi.org/10.33180/InfMIDEM2022.304

1 Introduction

Artificial intelligence (AI) is speeding up and becom-
ing more accurate and reliable. The centralized server
is used to connect applications from the edge to the
cloud. Due to the rapid growth of internet-connected
devices and an increase in internet traffic, today’s sys-
tems require very fast searches. For IP routing and In-
ternet Protocol (IP) forwarding, routers are key com-
ponents of networking equipment. Routers receive a
packet of data and decide where to route it. They must
provide fast packet routing by searching through large

How to cite:
S. R. S. Vadivel et al., “Energy Efficient and Low dynamic power Consumption TCAM on FPGA", Inf. Midem-J. Microelectron. Electron. Com-
pon. Mater., Vol. 52, No. 3(2022), pp. 181–189

amounts of data. High-speed searches are also required
in CPUs, database engines, and neural networks.

The latest Xilinx and Intel FPGA chips are increasingly
being used as data plane accelerators for Software
Defined Networking (SDN) [1]. The FPGA industry con-
tinually launches software development toolkits to
process and classify packets quickly and efficiently [2].
Ethernet/IP forwarding, firewalls, and QoS (Quality of
Service) require packet processing and classification.
There are three types of matching techniques used in

182

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

classification. They are Longest Prefix Matching (LPM)
[3], Matching with Wildcards [4], and Exact Matching
(EM) [5]. Matching with wildcards is the most challeng-
ing task.

Switching, Routing, QoS tables and Access Control List
(ACL) are all stored in a high-speed memory to allow
for forwarding decisions and limits. These memories
(lookups) contain information about results, such as
whether a packet with a particular destination IP ad-
dress should be dropped according to an ACL. Cisco
Catalyst switches use specialized memory architec-
tures, called CAMs and TCAMs, to store these memory
tables.

2 Related works

Content Addressable Memories (CAM) [6] deal only
with the binary digits (0’s and 1’s), whereas the Ternary
Content Addressable Memories (TCAM) deal with (0’s,
1’s, and x), where “x” represents Don’t care. TCAMs are
not available inside the FPGAs as they must be emu-
lated using memory and logic resources and this leads
to a significant resource overhead. Researchers have
consequently been working on reducing the resource
consumption of FPGA-based TCAMs. TCAMs are made
up of three basic parts: storage memory, a priority en-
coder, and match logic. A major cost component of FP-
GAs based on SRAM is their storage memories, which
comprise the actual TCAM contents to be searched.
Bosshart et al. [7] optimize the storage memory needs
of TCAMs by combining dual-output LUTs and partial
reconfiguration. This saves many storage memory re-
sources.

Match logic generates a flag for each incoming key,
and this consumes a significant amount of resources
because it must be done simultaneously for all mem-
ory locations at high speed. Ullah et al. [8] propose a
novel idea for efficiently mapping the matching logic
in Xilinx FPGAs by exploiting the built-in carry-chain
resources. As the size of the key and rules to be stored
in the TCAM increases, the storage and matching logic
requirements increase as well. As a result, it is worth
looking into optimizing both storage and matching
logic resources at the same time.

TCAM emulation on SRAM-based FPGAs has been
examined using four types of resources: block RAMs
(BRAMs), LUT RAMs (LUTRAMs), lookup tables (LUTs),
and flip-flops (FFs). Slice FFs is used as TCAM storage
memory in FF-based TCAMs [9] – [12]. Because each
FF holds a single bit of data and the architectural limi-
tations require the use of a LUT–FF pair, many of the

LUTs will be used as pass-through, wasting resources.
Researchers [13], [14], and [15–21] have extensively
investigated BRAM-based TCAM emulation using
SRAM-based FPGA. However, the efficient use of BRAM
for TCAM emulation is restricted by theoretical limits,
which require at least an SRAM/TCAM bit ratio of 29/9
and, when contrasted to LUTRAM or LUTs based TCAMs,
which requires 26/6 [22], or 5 × more.

Reviriego et al. [23] used 5 × 2 LUTs to emulate TCAMs
as well as modern SRAM-based FPGAs with their recon-
figuration capabilities for storing and updating TCAM
rules. Compared to PR-TCAM [23], BPR-TCAM [8] uses
a slice built-in carry-chain to reduce matching logic in
TCAMs. Both approaches rely on partial reconfigura-
tion for updating TCAM stored rules. Another resource
for TCAM-emulation, in addition to LUTRAM, is distrib-
uted RAM [22], [24], [25]. Ullah et al. [21] used distrib-
uted RAMs in a 6 × 1 configuration for resource allo-
cation in the same slice to obtain greater performance
per area (PA), in addition to using carry chains for the
match-logic reduction.

The D-TCAM [26] structure uses LUTRAMs on a 6 × 1
Xilinx template to store TCAMs and pipeline fine-
grain by using its built-in slice register to gain higher
throughput (TP). The previous work using the LUTRAMS
in the 5 x 2 configuration and all of the FFs in the SLI-
CEM were used to improve the throughput and perfor-
mance per area.

To implement broader TCAM words, the partial match
results must be transferred from the current slice’s carry
chain to the next slice’s carry chain [24]. By utilizing the
TCAM ANDing logic in the carry-chain, it is possible to
achieve the desired TCAM bit density while saving a sig-
nificant amount of LUT resources. It increases area per-
formance by at least 67 percent and energy efficiency
by at least 2.5 times. Frac-TCAM [27] utilizes RAM32M
to construct the 8 × 5 TCAM compared to 4 × 6 TCAM
used in DURE, thus almost doubling the utilization den-
sity. Moreover, LUTRAM outputs can be pipelined via
in-slice registers. In comparison to existing approaches,
logic utilization and TP can be enhanced, resulting in
improved PAs.

By combining BRAM and LUTRAM, Comp-TCAM [28]
can implement the TCAM architecture regardless of
the type of memory and can be adapted to meet the
system requirements. A decrease of 41.6% in hardware
resource utilisation has no effect on the functionality.

In this paper, a TCAM emulation on Xilinx SRAM-based
FPGAs to achieve a storage reduction in LUTRAMs and
a match reduction in logic resources is presented. To ac-
celerate the arithmetic operations, the match bits from

183

the distributed RAMs are efficiently AND-cascaded us-
ing the FPGA’s built-in carry chains. Ullah et al. [8] used
only one built-in carry-logic for matching one of the
rules. The proposed work used only one built-in carry
logic for matching two of the rules (i.e)., dual-output
LUTs are connected to the two built-in carry logic com-
pared to LH-CAM [10]. It is capable of mapping a single
output LUTRAM matching logic. This makes the delay
time shorter and the design clock rate faster because it
doesn’t use any logic or routing resources.

The main contributions of the paper are listed below:
1. An FPGA resource-saving TCAM emulation scheme

has been proposed that signifi cantly reduces the
resources needed to emulate an individual TCAM.

2. The mapping of two rules using dual-output
LUTs and then using the built-in carry-chain to
implement the match logic. Thus, additional
logic or routing resources are not required for the
matching logic. This reduces the delay time and
achieves a high clock speed.

3. TCAM is designed to be scalable in terms of
lookup rate, power consumption, device utiliza-
tion, and energy-effi ciency.

3 Proposed TCAM architecture

Consider the TCAM emulation on SRAM-based FPGAs.
For example, N = 4 and W = 4, i.e., a 4 × 4 TCAM, where
W denotes the key size or width, and depth is denoted
by N. The key size is 4, and each 4 × 1 SRAM has two
input address lines. The TCAM can be divided into two
blocks, as shown in Fig.1 and each of the four rules r0,
r1, r2, and r3 is mapped to a 4 × 1 SRAM. The top block
is indexed by b0 and b1, whereas the bottom block is
indexed by b2 and b3. The outputs of the SRAM are
combined using AND gates known as match logic. The
choice of SRAM implementation primitives, as well as
its width and depth extension, is essential to the effi-
cient TCAM designs on FPGA.

Figure 1: TCAM emulation using SRAMs.

The proposed TCAM makes use of the distributed LU-
TRAM and carry-chain logic present in the SLICEM of
Xilinx FPGAs. Consider a 2 × 5 LUT and carry chain as
shown in Fig. 2, which has a key width of five and two
rules, i.e., O5 and O6.

Figure 2: An architecture for mapping a LUT to a carry
chain

Figure 3: A 1 × 20 TCAM was mapped to from 5 × 2 LUTs

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

184

Two rules (Rule 6 and Rule 7) are read from O5 and O6
as the keyword and connected to the 5-bit LUT input
(A4:A0). Rule 6 is stored in memory M1, and Rule 7 is
stored in memory M2. The rules are updated using the
write address inputs as shown in Fig. 2. This LUT output
is connected to the built-in carry-chain for implement-
ing the match logic. Note that this is worth mentioning
as the proposed TCAM utilized the one carry-chain to
reduce the routing resources and extra logic needed,
resulting in a higher design clock rate and less delay
time.

To implement 1×20 TCAM as shown in Fig.3, LUTs (LUTA,
LUTB, LUTC, and LUTD) are stacked with different key-
words [19:0] and have eight different rules through O5
and O6. These eight rules are connected to the single
carry chain logics i.e., LUT output O6 is connected to
the select line of carry-chain logic, and the LUT output
O5 is connected to the input of the same carry-chain
logic. With the proposed TCAM, six input LUTs in a du-
al-output mode are combined with eight flip-flops as
well as the carry chain in a single slice to provide an 8
× 5 configuration (compared to 4 × 6 for single output
LUTs). As shown in Fig. 2, O5 is connected to the se-
lect signal of the carry chain through D5FFMUX, D5FF,
DOUTMUX and LUT output O6 is connected to the data
inputs of the carry chain via DCY0, MUXCY, D5FFMUX
and D5FF. In this manner, a fully pipelined TCAM struc-
ture is designed, resulting in improved performance
such as TP and EDP, while resource utilization is the
same as in a non-pipelined structure.

TCAMs with large dimensions can combine multiple
basic blocks. To increase the depth of a TCAM, more
basic blocks have to be stacked vertically, where each
basic block implements a 1 × 20 TCAM. All the basic
blocks have the same keyword. As shown in Fig. 4(c),
TCAM’s width can also be extended by configuring
multiple basic blocks with the same depth simultane-
ously to produce the final match signals.

Fig. 5 shows the proposed TCAM update logic (high-
lighted in blue dots). The Write Enable “WE” line is short
and connected to all the LUTRAM blocks. In the cur-
rent write cycle, “WE” lines are demultiplexed with the
row ID to determine which row needs to be updated.
For columns with the same key lines, column update
logic takes care of blocks in the same column. Serial
shift registers are implemented as SRL32 in SLICEM
for column update logic. For the depth varying from
64 to 1024 × 20 columns, only 32 SRL32 is required for
implementation. Similarly, for the depth varying from
64 to 1024 × 40 columns, only 64 SRL32 is required for
implementation. It is noted that, when the key size is
increased from 20 to 40, the SRL32 utilization is dou-
bled. An incoming key value is compared with the 5-bit

(a) (b)

(c)

Figure 4: a Architecture of Basic Block combining four
LUTs and carry chain into 1 × 20 TCAM; b Depth Exten-
sion; c Width Extension

global counter and the binary value is written into the
SRL32. A 3-bit counter is present inside the SRL fill logic
that controls the demultiplexer, and it increments once
every 33 times the global 5-bit counter.

4 Results and discussion

The Xilinx Virtex-7, 28-nm, XC7V2000TFHG1761-2L
FPGA device is used to implement the proposed TCAM
architecture with a −2 speed grade. There are 1,221,600
LUTs, 344,800 LUTRAMs, 2,443,200 FFs, and 305,400
SLICEs on this device. Performance evaluations of dif-
ferent TCAM sizes are also done using the Vivado HLx
2017.3 design suite. TCAM has a key size of 20 to 160
bits and several rules ranging from 64 to 1024 bits. A
SLICE capable of implementing an 8 × 5 TCAM is the
fundamental building block. As a result, keys multiply
by 5 and rules multiply by 8. The results are based on
the implementation of post-place and post-route.

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

185

TCAM storage and update logic resources are required
for different configurations, that is, 512 × 20, 512 × 40,
512 × 80, 512 × 160, and 1024 × 160 as mentioned in
Table 1. The table shows that the storage part of TCAMs
uses a lot more resources than the update logic.

Table 1: Resource Utilization for the proposed TCAM

TCAM Size(D x W) 512 × 20 512 × 40 512 × 80 512 × 160 1024 × 160
TCAM LUT as logic 0

LUT RAM 1024 2048 4096 8192 16384
FFs 2048 4096 8192 16384 32768

Update Logic LUT as logic 84 104 144 224 382
LUT RAM 32 64 128 256 256
FFs 23 23 23 23 23

Resources utilized for the different TCAM sizes are listed
in Table 2, which does not contain a priority encoder
or match reduction. The proposed TCAM architecture
only utilizes three FPGA resources: LUTRAMs for stor-
ing TCAM rules, FFs registers for deeper pipelining, and
slice carry chain for match logic. It is important to note
that no logic LUTs are needed to implement AND gates
since the rules are linked to LUT Carry-chains. Resource
utilization can be observed to be directly related to the
TCAM’s size. It should be noted that the LUT as logic for

the entire TCAM will be zero since Match logic can be
implemented with the help of the LUT carry chain. As
an example, the 64 × 20 TCAM requires 128 LUTRAMs
and 256 FF for pipelining, in addition to 32 CARRY4
for data transfer. In the proposed TCAM, FFs and carry
chains are used within the same SLICE. FFs are utilized
by multiplying the number of blocks by the depth of

Figure 5: Architecture of the proposed TCAM with update logic.

TCAM. The Virtex-7 FPGA from Xilinx can support eight
FFs within a single SLICE. To maximize the utilization of
SLICE resources, the proposed TCAM fully exploits the
FF available in the SLICE. With this approach, a pipe-
lined TCAM architecture can be implemented without
the use of additional SLICEs.

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

186

Table 2: Resource Utilization for different Configura-
tions of proposed TCAM

Width Parameters
Depth

64 128 256 512

20

LUT RAM 128 256 512 1024
FFs 256 512 1024 2048

Speed(MHz) 888.4 872.8 815.5 752.6
Power(mW) 4 9 18 34

40

LUT RAM 256 512 1024 2048
FFs 512 1024 2048 4096

Speed(MHz) 685.6 680.2 662.5 597.8
Power(mW) 9 18 34 60

80

LUT RAM 512 1024 2048 4096
FFs 1024 2048 4096 8192

Speed(MHz) 642 628 607 584
Power(mW) 18 34 60 109

160

LUT RAM 1024 2048 4096 8192
FFs 2048 4096 8192 16384

Speed(MHz) 567.8 532.8 395.4 372.5
Power(mW) 34 60 109 122

The speed and dynamic power consumption achieved
by the proposed TCAMs shown in Table 2 for the dif-
ferent TCAM configurations. The TCAM inserts registers
between the input and the TCAM module, as well as
between the TCAM module and the reduction logic.
The proposed TCAM achieves speeds from 372 to 888
MHz for different sizes. However, the proposed TCAM
degrades minimally as its size increases, and the deg-
radation does not double as the TCAM’s size increases.
For example, when moving from 64 × 20 to 128 × 20
and from 64 × 160 to 128 × 160, the speed decreases by
15.16 and 35MHz respectively. Similarly, when moving
from 64 × 20 to 64 × 40 and from 64 × 80 to 64 × 160,
the speed decreases by 202 and 75.1 MHz respective-
ly. In Table 2, TCAMs proposed in this paper scale well
with size, when analysing FPGA resource utilization
and clock speed. Vivado’s power analyser reports these
values for default switching activity, after the post-im-
plementation. From the above table it is evident that,
as the TCAM size increases, the power consumption
also increases. A 64 × 20 configuration consumes 7mW
of power dynamically, while a 512 × 160 configuration
consumes 122mW.

Table 3 compares the proposed TCAM architecture’s in
terms of parameters like the normalized slices, normal-
ized speed, PA, TP, update rate, energy per bit, and EDP
with state-of-the-art FPGA TCAMs. By using the following
equation, the number of normalized slices can be found:

Normalized slices =# of FPGA Slices +
(# of 36 KBitsBRAMs * 24) (1)

The normalized speed is calculated to provide a good
comparison between different FPGA technology
nodes:

 (2)

Throughput (TP), which is another important factor
in TCAMs, is calculated with the help of the following
equation:

 (3)

The proposed work has a throughput of 26.64, 50, and
83 Gbit/sec, which is better than the existing work for
the TCAM sizes of 512 × 40, 512 × 80, and 512 × 160, as
seen in Table 3.

The update rate is defined as the ratio of clock rate
(MHz) to the clock cycles, and its unit is a million up-
dates per second (MUPS) as follows:

Update rate (MUPS) = (4)

In the literature, Performance per area (PA), represent-
ed mathematically is

 (5)

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

187

Table 3: Performance Comparison with the state of the art FPGAs

Architecture
TCAM

Size (D×W)
LUTRAMS

(#)

Slice
Registers

(#)

BRAM
(36K)

FPGA
slices
Usage

Speed
(MHz)

Tp
(Gbits

/
s)

Search
cycles

Delay
(ns)

Update
rate

PA
(/1K)

P
(W)

Ebs
(fJ/
bit/

search)

EDP
(ns.fJ
/bit/

search)

Jiang[22] 1024 × 1501 20480 37556 0 20526 199 20.9 6 5.03 4.21 1.04 1.9 180 1290

REST [18] 72 × 281 8 390 1 77 50 0.98 5 20 0.07 0.998 0.11 798 22817

HP-TCAM [14] 512 × 362 0 2670 56 1637 118 4.25 5 8.47 0.23 1.045 0.19 102.2 865

G-AETCAM[9] 512 × 362 NA NA NA NA 358 NC - 2.79 1/358 NC NC - -

RPE-TCAM [29] 512 × 362 NA NA NA NA 319 NC - 3.13 1/319 NC NC - -

UE-TCAM [17] 512 × 362 0 1758 32 913 202 7.26 2 4.95 0.4 3.16 0.08 42.3 210

Xilinx Locke [30] 256 × 323 4096 341 0 1406 100 5.2 1 10 9.6 1.05 0.09 68 413

Comp-TCAM [28] 512 × 361 1536 - 16 541 525 - - - - 10.8 - - -

D-TCAM[26]

512 × 361 NA NA 0 968 460 16.56 - 2.17 NA 8.76 NA NA NA

512 × 721 NA NA 0 2357 214 15.41 - 4.67 NA 3.35 NA NA NA

512 × 1441 NA NA 0 4835 259 37.3 - 3.86 NA 3.95 NA NA NA

DURE [24]
512 × 362 4096 1174 0 1668 335 12.06 1 2.99 5.15 3.7 0.05 28 84

1024 ×1 442 32768 2700 0 9654 175 25.2 1 5.72 2.7 2.67 0.48 32.8 187

BPR-TCAM [8]

512 × 401 0 1105 0 768 360 10.08 1 2.78 - 6.72 - - -

512 × 801 0 1185 0 1280 188 12.77 1 5.32 - 2.55 - - -

512 ×1601 0 1345 0 2560 114 12.768 1 8.77 - 2.55 - - -

1024 × 1442 0 3029 0 4608 111.49 16.05 1 8.97 - 3.57 - - -

Frac-TCAM [27]

512 × 401 2048 4096 0 768 588 16.46 1 1.7 15.47 10.98 0.065 - -

512 × 801 4096 8192 0 1408 473.9 37.91 1 2.11 17.11 13.79 0.12 - -

512 × 1601 8192 16384 0 2944 254.8 40.77 1 3.92 9.58 7.09 0.15 - -

1024 × 1601 16384 32786 0 5888 250 39.95 1 4 9.4 6.95 0.19 - -

Proposed work

512 × 402 2048 4096 0 598 666 26.64 1 1.5 20.18 22.81 0.034 16.60 24.9

512 × 802 4096 8192 0 1105 635 50.8 1 1.57 19.24 22.86 0.065 15.87 24.92

512 × 1602 8192 16384 0 2222 524 83.84 1 1.91 15.88 19.32 0.110 13.43 25.65

1024 × 402 4096 8192 0 1374 563 22.52 1 1.78 17.06 16.78 0.070 17.09 30.42

1024 × 802 8192 16384 0 2428 532 42.56 1 1.88 16.12 17.95 0.120 15.87 29.84

1024 × 1602 16384 32786 0 4315 421 67.36 1 2.38 12.76 15.99 0.160 11.60 27.60

1 Virtex-7 (28 nm), 2Virtex-6 (40 nm), 3Virtex-5 (65 nm)

PA results in Table 3 show that the suggested TCAM im-
plementation outperforms prior work by a narrow mar-
gin. The lower resource usage is due to the search and
matching logic. Then, using equation 6, the energy/bit/
search (Ebs) is calculated.

 (6)

Another important parameter for comparing TCAMs is
Energy Delay Product (EDP), which is determined using
the following equation:

Energy Delay Product (EDP)=Energy*Delay (7)

It is observed that the proposed TCAM is 22%, 21%,
24%, and 26% more efficient than Frac-TCAM respec-
tively, for the different TCAM sizes in slice resource
utilizations. Compared to state-of-the-art designs, the
proposed TCAM has less slice utilization due to slice
carry chain utilization. Compared with Frac-TCAM, BPR-
TCAM, DURE, D-TCAM, and Comp-TCAM, the proposed
TCAM achieves higher clock speed due to inbuilt slice
carry chain utilization, SLICEM registers, and RAM32M
for the different TCAM sizes.

TCAM size 512 × 40 has a dynamic power consumption
of 34mW and a delay time of 1.5 ns. Thus, the energy
consumption is 16.60 fJ/bit/search and the EDP is 24.9
ns.fJ/bit/search. The EDP achieved in the proposed

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

188

work is 3.37 and 8.4 times lower than that of DURE [24]
and UE-TCAM [17] respectively, and is the lowest among
the various FPGA-based TCAM architectures. TCAM size
1024 × 160 is a larger TCAM that uses 190mW of dy-
namic power and has a delay time of 2.38ns. Therefore,
its EDP is 27.60 ns.fJ/bit/search, almost 46 times less
than that of the 150-kbit TCAM implementation in [22].
Thus, the proposed work is also a very energy-efficient
TCAM architecture.

5 Conclusion

An FPGA implementation of a TCAM that uses SRAM for
higher energy efficiency and resource efficiency is pre-
sented. By leveraging the architecture of Xilinx FPGAs,
TCAMs can be emulated efficiently. Utilizing LUTRAMs
with dual outputs within the latest seven series FPGAs,
as well as built-in slice registers and carry chains, a scal-
able TCAM architecture is proposed. When compared
to the conventional 8 × 5 TCAM, the suggested design
can map an 8 × 1 TCAM, virtually doubling the utiliza-
tion density. In addition, the use of in-slice registers to
pipeline LUTRAM outputs allows for high-speed opera-
tion, and the utilization of carry-chain logic for match
reduction archives lower slice utilization. Hence, both
logic utilization and TP are enhanced, resulting in a
better PA compared with the existing approaches. It
achieved an EE and PA that were at least 3.34 and 8.4
times and 56% better than those of the other FPGA-
based TCAM solutions, respectively. The large size of
TCAM emulation on SRAM-based FPGAs, this solution
outperforms the existing solutions with its low dynam-
ic power consumption.

6 Conflict of Interest

The authors declare no conflict of interest.

7 References

1. Zilberman, N. Audzevich, Y. Covington, G.A.
Moore, A.W. “NetFPGA SUME: Toward 100 Gbps as
Res for the diff erent TCAM sizes in slice resource
utilization search Commodity”. IEEE Micro 2014,
vol. 34, 32–41.

2. Xilinx. “SDNet Packet Processor User Guide
UG1012 (v2018.1)”, Xilinx: San Jose, CA, USA,
2018.

3. Reviriego, P. Pontarelli, S. Levy, G. “CuCoTrack:
Cuckoo fi lter based connection tracking”. Inf. Pro-
cess. Lett. 2019, vol.147, 55–60.

4. Sundstron, M. Larzon, L. Åke “High-performance
longest prefi x matching supporting high-speed
incremental updates and guaranteed compres-
sion”. In Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Commu-
nications Societies, Miami, FL, USA, 13–17 March
2005 Vol.3, pp. 1641–1652.

5. Yu, F. Katz, R. Lakshman, T. “Effi cient Multimatch
Packet Classifi cation and Lookup with TCAM”. IEEE
Micro 2005, vol.25, 50–59.

6. Pagiamtzis, K. Sheikholeslami, A. “Content-Ad-
dressable Memory (CAM) Circuits and Architec-
tures: A Tutorial and Survey.” IEEE J. Solid-state
Circuits 2006, vol.41, 712–727.

7. Bosshart, P. Gibb, G. Kim, S.H. Varghese, G. McKe-
own, N. Izzard, M. Mujica, F. Horowitz, M. “For-
warding metamorphosis: Fast programmable
match-action processing in hardware for SDN”.
In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication
(SIGCOMM ’13), Hong Kong, China, 12–16 August
2013.

8. A. Ullah, A. Zahir, N. A. Khan, W. Ahmad, A. Ramos,
and P. Reviriego, “BPR-TCAM—Block and partial
reconfi guration based TCAM on Xilinx FPGAs,”
Electronics, vol. 9, no. 2, p. 353, 2020.

9. M. Irfan and Z. Ullah, “G-AETCAM: Gate-based ar-
ea-effi cient ternary content-addressable memory
on FPGA,” IEEE Access, vol. 5, pp. 20785–20790,
2017.

10. Z. Ullah, “LH-CAM: Logic-based higher perfor-
mance binary CAM architecture on FPGA,” IEEE
Embedded Syst. Lett., vol. 9, no. 2, pp. 29–32, Jun.
2017.

11. M. Irfan and A. Ahmad, “Impact of initialization
on gate-based area effi cient ternary content-
addressable memory,” in Proc. Int. Conf. Comput.,
Electron. Commun. Eng. (iCCECE), Southend, U.K.,
Aug. 2018, pp. 328–332

12. H. Mahmood, Z. Ullah, O. Mujahid, I. Ullah, and A.
Hafeez, “Beyond the limits of typical strategies:
Resources effi cient FPGAbased TCAM,” IEEE Em-
bedded Syst. Lett., vol. 11, no. 3, pp. 89–92, Sep.
2019.

13. M. Somasundaram, “Circuits to generate a se-
quential index for an input number in a pre-de-
fi ned list of numbers,” U.S. Patent 7 155 563 B1,
Dec. 26, 2006.

14. Z. Ullah, K. Ilgon, and S. Baeg, “Hybrid partitioned
SRAM-based ternary content addressable memo-
ry,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 12, pp. 2969–2979, Dec. 2012.

15. Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “Z-
TCAM: An SRAMbased architecture for TCAM,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
23, no. 2, pp. 402–406, Feb. 2015.

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

189

16. Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “E-
TCAM: An effi cient SRAM-based architecture for
TCAM,” Circuits, Syst., Signal Process., vol. 33, no.
10, pp. 3123–3144, Oct. 2014.

17. Z. Ullah, M. K. Jaiswal, R. C. C. Cheung, and H. K.
H. So, “UE-TCAM: An ultra-effi cient SRAM-based
TCAM,” in Proc. TENCON-IEEE Region 10 Conf., Ma-
cao, China, Nov. 2015, pp. 1–6.

18. A. Ahmed, K. Park, and S. Baeg, “Resource-effi cient
SRAM based ternary content addressable memo-
ry,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 4, pp. 1583–1587, Apr. 2017.

19. I. Ullah, Z. Ullah, and J.-A. Lee, “Effi cient TCAM
design based on multipumping-enabled mul-
tiported SRAM on FPGA,” IEEE Access, vol. 6, pp.
19940–19947, 2018.

20. F. Syed, Z. Ullah, and M. K. Jaiswal, “Fast content
updating algorithm for an SRAM-based TCAM on
FPGA,” IEEE Embedded Syst. Lett., vol. 10, no. 3, pp.
73–76, Sep. 2018.

21. I. Ullah, Z. Ullah, and J.-A. Lee, “EE-TCAM: An en-
ergy-effi cient SRAM-based TCAM on FPGA,” Elec-
tronics, vol. 7, no. 9, p. 186, Sep. 2018,

 https://doi.org/10.3390/electronics7090186
22. W. Jiang, “Scalable ternary content addressable

memory implementation using FPGAs,” in Proc.
Architectures Netw. Commun. Syst., Oct. 2013,
pp. 71–82.

23. Reviriego, P. Ullah, A. Pontarelli, S. “PR-TCAM: Effi -
cient TCAM Emulation on Xilinx FPGAs Using Par-
tial Reconfi guration”. IEEE Trans. Very Large Scale
Integr. Syst. 2019, 27, 1952–1956.

24. Ullah, I. Ullah, Z. Afzaal, U. Lee, J.-A. “DURE: An
Energy- and Resource-Effi cient TCAM Architec-
ture for FPGAs With Dynamic Updates”. IEEE Trans.
Very Large Scale Integr. Syst. 2019,vol. 27, 1–10.

25. P. Maidee, “Multiplexer-based ternary content ad-
dressable memory,” U.S. Patent 9 653 165, May 16,
2017.

26. Irfan, Z. Ullah, and R. C. C. Cheung, “D-TCAM: A
high performance distributed RAM based TCAM
architecture on FPGAs,” IEEE Access, vol. 7, pp.
96060–96069, 2019.

27. Ali Zahir, Shadan Khan Khattak, Anees Ullah ,
Pedro Reviriego , Fahad Bin Muslim, and Waleed
Ahmad “FracTCAM: Fracturable LUTRAM-Based
TCAM Emulation on Xilinx FPGAs,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 12, pp.
2726-2730, DEC. 2020

28. Muhammad Irfan, Hasan Erdem Yantır, Zahid
Ullah, and Ray C. C. Cheung, “Comp-TCAM: An
adaptable composite Ternary content-address-
able Memory on FPGAs,” IEEE Embedded Systems
Letters, Nov. 2021.

29. Irfan, Z. Ullah, M. H. Chowdhury, and R. C. C.
Cheung, “RPETCAM: Reconfi gurable power-effi -

cient ternary content-addressable memory on
FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 8, pp. 1925–1929, Aug. 2020.

30. K. Locke, Parameterizable Content-Addressable
Memory, Xilinx, San Jose, CA, USA, 2011.

31. TCAM Source Code. Accessed: Aug. 23, 2023. [On-
line]. Available: https://github.com/sridharraj240/
TCAM

Received: 08. 06. 2022
Accepted: 03. 09. 2022

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189

Copyright © 2022 by the Authors.
This is an open access article dis-
tributed under the Creative Com-

mons Attribution (CC BY) License (https://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original work is properly cited.

