
225

Original scientific paper

 MIDEM Society

Instruction Decompressor Design for a VLIW
Processor
Abdul Rehman Buzdar, Liguo Sun, Azhar Latif, Abdullah Buzdar

University of Science and Technology of China (USTC), Department of Electronic Engineering and
Information Science, Hefei, Peoples Republic of China

Abstract: The FlexCore processor is a wide instruction word processor, which allows the control of datapath elements at a very precise
level. The FlexCore scheme offers full control over the architecture and helps to improve the overall performance. As the memory is
very expensive in embedded systems both in terms of power and area, to gain the full advantages of long instruction word of the
FlexCore we need to use the memory footprint very efficiently. To remedy this the instructions in the FlexCore processor memory are
stored as application-specific, compressed instruction format (AS-ISA) which is then converted on-the-fly to a native, decompressed
instruction format (N-ISA) by an instruction decompressor. This paper deals with the implementation of the instruction decompressor
and the analysis of compression and decompression schemes used in the FlexCore processor. The instruction decompressor is
designed and implemented in VHDL and synthesized using Cadence RTL compiler into three different process technologies 130-nm,
90-nm, and 65-mn provided by the STMicroelectronics. The synthesis results show that the design and implementation of instruction
decompressor greatly impacts the performance of FlexCore in terms of power, area and timing. We show the impact of different
parameters of compression scheme used for the implementation of instruction decompressor in hardware which was previously
shown in software. These parameters include the formation of lookup table (LUT) groups, the size of LUTs and the LUT-Load instruction
Interval meaning how often the LUTs needs to be updated and how many LUTs are updated through a single LUT-Load instruction.

Keywords: FlexSoC; FlexCore; VLIW Processor; Instruction Decompressor; LUT; ASIC

Ukazni dekodirnik za VLIW procesor
Izvleček: Procesor FlexCore je procesor z zelo dolgo ukazno besedo, ki omogoča kontrolo poti elementov z visoko natančnostjo.
Shema FlexCore pmogoča popolni nadzor nad arhitekturo in omogoča izboljšavo delovanja. Za doseganje vseh prednosti dolge
ukazne besede in visoke cene pomnilnika je potrebno spomin učinkovito izrabiti. Ukazi so v spominu FlexCore procesorja shranjeni
kot aplikacijsko specifični in stisnjeni v AS-ISA formatu. Dekodiranje v N-ISA format poteka v ukaznem dekodirniku. Ukazni dekodirnik,
opisan v članku, je realiziran v treh tehnologijah (130 nm, 90 nm in 65 nm). Rezultati kažejo, da ima dizajn in implementacija velik vpliv
na učinkovitost procesorja v luči moči, prostora in časa. Vplivi parametri so prikazani v strojni opremi. Ti parametri vključujejo tvorjenje
skupin vpoglednih tabel (LUT), njihovo velikost in potreben interval njihovega osveževanja.

Ključne besede: FlexSoC; FlexCore; VLIW Procesor; Ukazni dekoder; LUT; ASIC

* Corresponding Author’s e-mail: abdul.buzdar@alumni.chalmers.se

Journal of Microelectronics,
Electronic Components and Materials
Vol. 45, No. 4 (2015), 225 – 236

1 Introduction

There is an ever increasing demand for the electronic
gadgets to have a wide range of applications ranging
from multimedia to video games and the list of de-
mands is increasing day by day. To efficiently manage
all these applications the electronic devices should
have functionalities offered by general purpose proces-
sors and must also be efficient in terms of both power
and area. This is a demanding task, to run the applica-
tions which are compute-intensive, one has to use spe-
cialized hardware accelerators or dedicated applica-
tion-specific processing units which are controlled by

microprocessors [1-4], such as an ARM core [5], placed
on a single chip. The memory management is also very
critical for embedded systems both in terms of cost and
area. To accommodate these hardware accelerators the
I/O activity and memory usage has to be kept down.
The approach of adding hardware accelerators in this
way does not cater the rapidly changing depends of
users, so we need to have an architecture which offers
the efficiency of an ASIC and flexibility of a program-
mable platform. The demand for the embedded sys-
tems to have higher performance and more function-
ality makes general purpose processors unsuitable for

226

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

them. The higher functionalities offered by the general
purpose processor comes with a cost of higher power
dissipation which will result in shorter battery life and
increased weight in the form of cooling parts. To gain
the required performance in the embedded systems
with low power and small area, using heterogeneous
system-on-chips is one of the options [6-9]. The het-
erogeneous SoCs uses some special purpose hardware
blocks, which are controlled by one or more embedded
microprocessors. One of the major drawbacks of het-
erogeneous SoCs is their high non-recurring engineer-
ing (NRE) costs.

Application-Specific Instruction-set Processors (ASIPs)
[10-14] try to combine the flexibility of programma-
ble processors and the efficiency offered by the cus-
tomized integrated circuitry. The ASIPs are generally
constructed by adding specialized hardware blocks to
programmable processor cores. The instruction set of
ASIPs consists of some general instructions to gain the
advantage of general purpose processors and some ap-
plication-specific instructions to gain the efficiency of
specialized hardware. This scheme makes it easy to add
specialized hardware blocks in the existing datapath
and subsequently add application-specific instruc-
tions. By modifying the application software running
on ASIPs, late design alterations can be accommodat-
ed easily, enabling flexible and high performance SoCs.
This makes it possible to adopt a hardware-software
co-design methodology, in which the conventional
software design flow can be adopted. The major draw-
back of ASIPs is that as the addition of new instructions
make them prone to binary incompatibility issues be-
tween various hardware implementations.

Figure 1: Overview of FlexCore processor

The FlexCore processor [15-20] which is based on the
concept of the FlexSoC, is an attempt to integrate the
efficiency of an ASIC (or special-purpose hardware) and
the flexibility or programmability of general purpose

processors. The FlexCore integrates all the functional
units in a homogenous way to take the advantage of
traditional general purpose processors, shown in Fig. 1.
The specialized hardware blocks are added into the da-
tapath of general purpose processor to gain the bene-
fits of conventional five stage pipelined processors. The
FlexCore processor does not have a standard instruc-
tion set architecture (ISA) like that offered by conven-
tional general purpose processors, in which the ISA is
used to control the pipeline stages of the processor at
various clock cycles. The FlexCore is a wide control word
processor which controls the datapath at a much finer
grained level than conventional processors. The Flex-
Core processors wide control word takes a single cycle
to control the whole datapath. The datapath units of
a FlexCore processor consist of conventional five-stage
processor components and some specialized hardware
blocks. The wide control word of the FlexCore proces-
sor contains all the signals to every datapath unit and
the interconnecting structure. The use of a wide control
word gives full control of underlying hardware to the
programmer/compiler, resulting in increased perfor-
mance, which lacks in the conventional instruction set
architecture (ISA) approach. The previous research on
datapath [23-27] has shown to improve the efficiency
due to increased controllability.

2 FlexCore processor Architecture

The Baseline FlexCore processor [15-20] without any
hardware accelerators and datapath units connected in
their minimum configuration, act as a single issue five-
stage pipelined processor e.g. similar to the Hennessy-
Patterson 32-bit DLX [21] and MIPS R2000 [22] . This
feature of the FlexCore makes it possible to execute the
application code of a general purpose processor as effi-
ciently as a single issue five-stage processor. Unlike the
conventional methods, the performance benefits in
the FlexCore processor are gained through the use of
hardware accelerators and the fine grained control of
datapath units. Depending on the application require-
ments, the FlexCore processor can be easily extended
with special-purpose hardware accelerators [29], [30].
The FlexCore processor has a native ISA (N-ISA), which
is 91-bit wide, when no hardware accelerators are used.
The N-ISA is capable of controlling the datapath units
and interconnects at a very fine-grained level. The in-
structions in the memory of the FlexCore are stored as
applications specific ISAs (AS-ISA), which are then con-
verted on-the-fly to a native ISA (N-ISA) format, by a re-
configurable instruction decompressor.

The AS-ISA can be configured for a particular class of
applications, those who have identical processing
needs. The addition of new application needs only to

227

define a new ASISA, thus the N-ISA and the translation
process would remain unchanged. This feature of de-
fining a new AS-ISA offers a possibility for performance
optimization for the compiler e.g. using the already
available instruction sequence instead of expanding
the N-ISA. Fig. 2 shows the datapath units used in a
baseline FlexCore processor. It consist of a register file,
arithmetic and logic unit (ALU), load/store unit and a
program counter unit. All these datapath units are fully
interconnected, meaning that the interconnect con-
figuration can be changed for different application re-
quirements during the design stage. The baseline Flex-
Core has many unused interconnect paths that may be
removed later, which is one of the main reason for the
FlexCore enhanced performance. The output of each
datapath unit is connected to a data register, which
acts as pipeline registers, so that the FlexCore can emu-
late the functionality of a general purpose processor.
Since data can be routed to any place, different data-
path pipeline schemes can be created. The flexCore
processor can be extended with new hardware accel-
erators depending on an application requirements. The
FlexCore processor was used to run fast Fourier trans-
form (FFT) benchmark application. Since this algorithm
makes extensive use of multiplication operations, the
baseline FlexCore was extended with a 32-bit multi-
plier unit, shown in Fig. 3. The addition of a multiplier
unit also affected the size of N-ISA with the addition of
two 32-bit inputs, 64-bit output and an enable signal,
became part of N-ISA. The N-ISA of multiplier extended
Baseline FlexCore processor consists of 109-bit control
signals.

The concept of the FlexCore N-ISA is very different
from the conventional ISA approach, and in this way
changes the abstraction level at which the compiler/
programmer manages the datapath and interconnect.
The conventional ISA of a general purpose processor
contains instructions like ADD, SUB etc. and the results
of these instructions are stored on the register file. In
case of a statically scheduled processor if the input op-
erands are not yet available, the processor needs to be
stalled and wait for the input operands. However in a

dynamically scheduled processor the result of previous
instructions, can be rerouted if it has been executed
but not yet written on the register file. This technique
makes the scheduling process simpler, but reduces the
performance because of putting extra load on the reg-
ister file. Instead of storing back every result unneces-
sarily on the register file, it can be routed directly to the
instructions that needs it. The FlexCore compiler [33],
[34] has complete control over the datapath units and
interconnects for each clock cycle. For example while
performing the multiplication operation the FlexCore
compiler will set the control signals for the multiplier
unit, when the input values for the multiplier are avail-
able at the right clock cycle and route the result of mul-
tiplication to the destination, where it is needed. This
technique improves the overall performance of the sys-
tem at the cost of complicating the scheduling process.
In this way the compiler can freely route the data to any
destination. This results in the minimum register file ac-
cess as the data can be routed to the place where it is
required, instead of storing it on a register file. Hence
this technique saves power and improves performance.

3 Flexible datapath interconnect

The flexible interconnect of the baseline FlexCore pro-
cessor [20] consists of a matrix switch, shown in Fig. 4.
This means that there is a multiplexer connected to the
inputs of each datapath unit, which can select any of
the inputs coming from output ports of other datapath
units. This maximum freedom of routing the data to
any location, results in scheduling efficiency in contrast
to a general purpose processor, where there are limited
options for routing. This also helps the compiler to con-
trol the order of the pipeline stages and increase the
efficiency of datapath units.

Figure 2: Baseline FlexCore processor

Figure 3: FlexCore Processor extended with Multiplier

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

228

Figure 4: Illustration of FlexCore Datapath Interconnect

The FlexCore processor is statically scheduled, which
means that the compiler knows in advance which inter-
connect paths will be used for a particular set of appli-
cations. This can help to save power and improve per-
formance by removing the unused interconnect paths
based on the application profiling at design time. To
make sure that the FlexCore can emulate the function-
ality of a general purpose processor, those intercon-
nect paths which are necessary for the FlexCore to act
as a general purpose processor, are not removed. The
research on the FlexCore flexible interconnect, shows
that the performance improves when just a few paths
are added beyond the GPP case and almost half of the
interconnect paths are never used by a particular set of
applications executed. So these unused paths are re-
moved physically at design time, without any impact
on the performance and the number of cycles needed
to execute a set of applications.

4 The FlexSoC framework

A lot of work has been done on the FlexSoC framework,
since this project has started. The FlexSoC framework
[33], [34] consists of a compiler, simulator and a hard-
ware generator, shown in Fig. 5.

4.1 Compiler

The input to the compiler is the MIPS assembly which
is produced by a MIPS cross-compiler. The EEMBC [28]
benchmarks have been used to produce MIPS assembly
and then compile it using FlexSoC compiler. The out-
put of the compiler is Register Transfer Notations (RTN)
format instructions. These RTN format instructions are
statically scheduled and are used to exploit the inher-
ent parallelism of the FlexCore processor. These instruc-
tions later can be used to compare the performance of
FlexCore with a general purpose processor.

4.2 Simulator

A cycle accurate simulator is implemented in Haskel
and is capable of simulating both the FlexCore and
MIPS assembly. This feature of simulator helps to trace
bugs in the compiler and measure its performance. The
simulator is capable of giving simulation cycle count,

profiling and simulation trace statistics with accuracy.
As the FlexCore processor is flexible in terms of both its
datapath units and their interconnections, this feature
can be emulated in the simulator and the simulation of
FlexCore processor can be done in different hardware
configurations. The simulator can also be configured to
a single issue five-stage processor to emulate a general
purpose processor.

4.3 Hardware Generator

The FlexSoC hardware generator is capable of gener-
ating VHDL code for the FlexCore processor in differ-
ent configurations, some of which have been imple-
mented on FPGAs. The FlexSoC framework also has the
capability of verifying the VHDL code generated and
synthesis, place and route features have also been pro-
vided. It also gives information about area, timing and
power usage.

Figure 5: Illustration of FlexSoC Framework

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

229

5 Existing compression schemes

FlexCore is a wide instruction word processor, so to
take the full advantage of the expressiveness found in
its wide control word, the instructions are stored on the
memory in compressed format. Let’s take a brief look at
the compression scheme used in the FlexCore proces-
sor. The main idea behind the encoding scheme [35] is
the use of lookup tables (LUTs) to store the bit patterns,
Shown in Fig. 6.

Figure 6: Illustration of Compression Scheme Imple-
mented

The indexes of these LUTs are then combined to form
the compressed instructions. The bit patterns are gen-
erated at compile-time based on the fact that some
combination of bits in the control word of the FlexCore
will not be used in some portions of the code being ex-
ecuted. The full advantage of the expressiveness found
in the wide control word of the FlexCore processor is
thus not utilized. This technique can be implemented
in hardware with a simple logic and the sizes of the
LUTs are also reasonably small. The contents of the LUTs
can be changed using special instructions (LUT-Load
instructions) and the bit patterns to be stored in the
LUTs are sent through these Load instructions. The pro-
cessor is stalled each time the contents of LUTs need to
be changed, so the placement of the LUT-load instruc-
tions will affect the overall performance. The size of the
LUTs will affect the compressed instruction size and
the interval of LUT-Load instructions. The indices of the
LUTs are combined to form the compressed instruc-
tion, and the size of the LUT decides the number of bits
needed for each index. The main goal of this compres-
sion scheme is to utilize the expressiveness found in
the wide control word of the FlexCore processor and
to be able to store large programs, yet keeping the run-
time costs low. The compression scheme [35] is also
associated with a methodology for the partitioning of
wide instruction stream that is, how many LUTs will be
needed for a particular application and what should be

the size of each LUT. The NISC [23-27] project also pro-
poses the use of LUTs for compression and decompres-
sion of long instruction word. It uses only one or two
LUTs to store the entire program, making the LUT size
very large. Therefore it is more suitable for implement-
ing on FPGA, rather than on an ASIC platform.

6 Implementation of compression
scheme

The compression scheme [35] is implemented in VHDL
to study the impact of this scheme on the performance
of the FlexCore processor in terms of area, timing and
power requirements. Let’s take a look at the specifica-
tion of the instruction decoder implemented. The 71-
bit instruction stream is coming from the Cache of the
FlexCore processor, as an input to the instruction de-
coder. The 71-bit instruction stream consists of 39 bits
of instructions coming from I-Cache, and 32 bits of data
coming from D-Cache. There are two types of instruc-
tions, shown in Fig. 7, one to load the LUTs with new
content (Load instructions) and one used to send the
already stored content of the LUTs to form the decom-
pressed full 109-bit wide control word of the FlexCore
(Normal instructions). The last bit of 71-bit wide com-
pressed instruction is used to decide between the two
types of instructions. One entry each of two LUTs can
be loaded with a single LUT-Load instruction. The two
instruction types consist of sub fields, shown below:

Load Instruction:
6-bit Index of LUTn, 6-bit Index of LUTm, Data of LUTn,
Data of LUTm, Unused bits, 8 Ctrl bits, Load=1

Normal Instruction:
LUT1 address, LUT2 address, LUT3 address LUT8 ad-
dress, 32-bit imm, Load=0

Figure 7: Illustration of Instruction Format used

The index of the LUT decides the depth of each LUT,
with n-bit index the depth of the LUT would be 2n. Fig.
8 illustrates the implementation scheme of the Flex-
Core processor with the instruction decoder. The 109-
bit control word of the FlexCore is divided into eight
groups and each group forms one LUT. These groups
are formed using the FlexSize tools, which were devel-
oped for implementing the compression scheme [35].

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

230

Table 1: Specification of LUTs Implemented

LUT Name LUT Index
Bits

LUT-Entry Data
Bits

ALU Group 6 13
RFA Group 5 6
RFB Group 5 6
RFW Group 6 10

LS Group 4 13
BUF Group 4 10
PC Group 4 9

Mult Group 4 10

Table I shows the specification of eight LUTs used in the
implementation of the instruction decompressor. Here
the LUT-Entry Data Bits indicate the width of each LUT
and index bits are the minimum bits required to access
all entries of each LUT. The sum of all Index bits of each
LUT group, 32 immediate bits and one bit for indicat-
ing the instruction type equals 71 bits, the total length
of compressed instruction which is the input to the in-
struction decompressor i.e. :

6+5+5+6+4+4+4+4+32+1 = 71 bits

The output of the instruction decompressor is 109-bit
wide control word of the Baseline FlexCore processor,
which is formed by concatenating all the data bits from
one entry each of eight LUTs and 32 immediate bits i.e. :

13+6+6+10+13+10+9+10+32 = 109 bits

The above mentioned LUT groups are formed using a
methodology which is used for the partitioning of the
wide instruction word into smaller groups and is asso-
ciated with the compression scheme [35]. The method
consists of four steps, the first step is the identification
of bits that are highly correlated and should be placed
in the same group. Later the groups formed are evalu-
ated using a user-defined cost function. In our case
the LUT-access time, compression ratio and energy ef-
ficiency forms the cost function. Here the energy effi-
ciency means that to reduce the power dissipated by
the instruction decompressor during the LUT-Load and
Normal instructions.

7 Instruction decompressor

Fig. 9 shows the block diagram of instruction decom-
pressor, it consists of a main unit and eight LUT units,
which act as simple memory units. As the input to the
instruction decompressor is 71-bit compressed instruc-
tion stream, which is divided into different sub fields in-
ternally in the main unit to control the eight LUT units.

The 8-bit ctrl field of CTN-ISA is used to indicate which
LUT unit to load, and one bit each of 8-bit ctrl field is
connected to the Load signal of LUT units. The address
bits coming through the CTN-ISA, are connected to
each LUT unit address signal which is used to decide
which LUT entry to load or to send the stored data out
in case of Normal instructions.

Figure 9: Block Diagram of Instruction decompressor

Figure 8: FlexSoC scheme with Instruction decompres-
sor

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

231

Similarly data bits coming through CTNISA are con-
nected to the Load-Data signals of each LUT unit, which
carries the data to be loaded in to the specified LUT ad-
dress. Fig. 10 shows the block diagram of a LUT unit, it
consists of a DeMux which is used to select the LUT-
Load Data based on the LUT-Address, to send it to the
specified LUT entry. In case of an n-bit wide LUT, n flip-
flops for each LUT entry are used to store the LUT-Entry
Data. A multiplexer is used to select which LUT-Entry
Data is to be send to the output, based on the LUT-
Address. Fig. 11 shows the input output pin configura-
tion of the instruction decompressor. The pins on the
left are the input pins and the pins on the right are the
output pins. The detail of each pin is as follows:
- Clk /Reset
 As the name implies the Clk pin is used as an ex-

ternal clock to the instruction decompressor and
the Reset pin is used to give global reset to the
instruction decompressor.

- CTN_ISA
 This pin is used to get the 71-bit compressed in-

struction stream as an input into the instruction
decompressor from the Cache of the FlexCore
processor.

- Immediate
 This pin is used to output the 32-bit immediate

data coming from the D-Cache of the FlexCore
processor.

- ALUgroup
 This pin is used to output the 13-bit wide data

from one of the entries of ALU LUT and contains
the signals for ALU of the FlexCore processor.

- RFgroupA
 This pin is used to output the 6-bit wide data from

one of the entries of RFA LUT and contains the sig-
nals for Register File of the FlexCore processor.

- RFgroupB
 This pin is used to output the 6-bit wide data from

one of the entries of RFB LUT and contains the sig-
nals for Register File of the FlexCore processor.

- RFgroupW
 This pin is used to output the 10-bit wide data

from one of the entries of RFW LUT and contains
the signals for Register File of the FlexCore pro-
cessor.

- LSgroup
 This pin is used to output the 13-bit wide data

from one of the entries of LS LUT and contains the
signals for Load Store Unit of the FlexCore proces-
sor.

- BUFgroup
 This pin is used to output the 10-bit wide data

from one of the entries of BUF LUT and contains
the signals for Interconnect and Buffer of the Flex-
Core processor.

- PCgroup
 This pin is used to output the 9-bit wide data from

one of the entries of PC LUT and contains the sig-
nals for PC unit of the FlexCore processor.

- MULTgroup
 This pin is used to output the 10-bit wide data

from one of the entries of Mult LUT and contains
the signals for Multiplier unit of the FlexCore pro-
cessor.

Figure 10: Block Diagram of a LUT Unit

The timing diagram in Fig. 12 shows what happens dur-
ing a LUT-Load operation. When the load signal goes
high, the data coming from the I-Cache is loaded into
the specified entry of that LUT. One entry each of two
LUTs can be loaded through one LUT-Load instruction.
The LUT-Load instruction takes one cycle to load the
data into the specified LUT entry.

Similarly, the timing diagram in Fig. 13 shows what
happens during a Normal Instruction. When the load
signal goes low the address of each LUT entry for eight
LUTs is sent to corresponding LUTs and the data cor-
responding to each address is sent out on eight output
pins. This operation takes a single cycle.

8 Implementation of instruction
decompressor

After the VHDL implementation of the instruction de-
compressor, the next task was to synthesize the VHDL

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

232

description to a certain process technology using Ca-
dence RTL compiler [31]. Three different process tech-
nologies 130-nm, 90-nm, and 65-mn were used for syn-
thesis, provided by the STMicroelectronics [32]. But we
present here only the synthesis results for 65-nm tech-
nology. The aim of synthesizing the VHDL description
of the instruction decompressor is to study the impact
of inclusion of the instruction decompressor into the
FlexCore processor in terms of timing, area and power
requirements. The reason for this study is that the in-
struction decompressor will greatly affect the overall
performance of the FlexCore processor, because its
purpose is to efficiently manage the memory footprint.
The focus of this section would be to study the impact
of lookup tables (LUTs), in terms of power usage which
are used in implementing the instruction decompres-
sor. Also study the effect of LUT-Load instruction Inter-

val, meaning how often the LUTs needs to be updated
and how many LUTs are updated through a single LUT-
Load instruction. After starting the RTL Compiler, some
basic steps were performed such as setting up the li-
brary paths for 130-nm, 90-nm and 65-nm process tech-
nologies and linking the VHDL files required for synthe-
sis. The RTL Compiler was instructed to assemble the
VHDL files into an internal representation i.e. network
of virtual gates using the elaboration command. The
VHDL code of the instruction decompressor was found
to be synthesizable with no errors. The next step in the
synthesis process was to map the network of virtual
gates to real hardware that is to the real standard cells
provided by the STMicroelectronics. Initially no timing
constraint was set. Also, a low computational effort was
used to get some idea of the intrinsic timing behavior
of the implementation, via Static Timing Analysis (STA).
The worst-case delay and area of implementation were
documented. The worst-case signal propagation path
was found to be passing through RFgroupW LUT, be-
cause the size of this LUT is bigger than most of the oth-
er LUTs implemented for the instruction decompressor.

The clock frequency for the FlexCore processor was
set to 400 MHz. The design was re-synthesized with
the timing constraint of 2.5 ns and using medium ef-
fort. The worst-case delay and area of implementation
were documented again for these specifications. This
time the worst-case signal propagation path was found
to be passing through ALUgroup LUT, since this LUT is
width and length wise bigger than the other LUTs im-
plemented for the instruction decompressor. Table II
shows the timing and area results for the instruction
decompressor. The worst-case delay value shows that
the instruction decompressor can be synthesized with
a more strict timing constraint.

Table 2: Timing and Area results

Timing
Constraint

(ps)

Synthesis
Effort

Worst-case
Delay (ps)

Estimated
Area (μm2)

no low 1053 44840
2500 medium 1240 44551

The power analysis of instruction decompressor was
performed initially by assigning some switching prob-
abilities on the primary data inputs using medium ef-
fort. Table III shows the power results with probability
for high logic state on CTNISA=0.5, Reset=0.0 and tog-
gling probability (ns) on CTNISA=0.02, Reset=0.0.

Figure 11: Instruction Decompressor Pinout

Figure 12: Timing Diagram of LUT-Load operation

Figure 13: Timing Diagram of Normal Instructions

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

233

Table 3: Initial power results

Leakage
Power(mW)

Dynamic
Power(mW)

Total
Power(mW)

Clk Net
Power(mW)

1.694 11.086 12.781 1.511

Later different test vectors were generated, by setting
different LUT-Load intervals and the number of LUTs
loaded through a single Load instruction. Three differ-
ent set of test vectors were generated setting 60, 100
and 300 as LUT-Load instruction intervals, each set hav-
ing a total of 20000 test vectors. Two variants of these
three set of test vectors were also generated, first by
setting one entry of a single LUT is loaded through one
LUT-Load instruction and the other one by setting that
one entry each of two LUTs is loaded through a single
Load instruction.

Table 4: Signal Statistics for test vectors from TCF files

Test Vectors
Type

Toggle Rate
(toggles/ns)

CTN-ISA

Toggle Rate
(toggles/ns)

NISA
Less Random 0.0858 0.0358

More Random 0.1808 0.1632

Later another set of test vectors was also generated
keeping the same specifications as mentioned earlier,
but this time the LUT-Load data fields and immediate
field were generated, where as in the previous version
of test vectors the LUT-Load data and immediate fields
do not have much variations among the test vectors.
The reason for generating these two set of test vectors
is to get a better idea of power consumption of the
instruction decompressor. The first version of the test
vectors will be referred to as test vectors having less
randomness and the later one as test vectors having
more randomness in this document. The Table IV shows
the signal statistics for test vectors, obtained from the
Toggle Count Format (TCF) files.

Table 5: Power results with test vectors having less ran-
domness

No. of
LUTs

Loaded

LUT-Load
Instruction

Interval

Leakage
Power
(mW)

Dynamic
Power
(mW)

Total
Power
(mW)

two 60 1.816 2.720 4.536
one 60 1.804 2.740 4.544
two 100 1.815 2.717 4.533
one 100 1.804 2.734 4.539
two 300 1.809 2.703 4.512
one 300 1.814 2.711 4.525

Tables V and VI shows the power results using 20000
test vectors having less and more randomness respec-

tively for the instruction decompressor.

Table 6: Power results with test vectors having more
randomness

No. of
LUTs

Loaded

LUT-Load
Instruction

Interval

Leakage
Power
(mW)

Dynamic
Power
(mW)

Total
Power
(mW)

two 60 1.713 10.747 12.460
one 60 1.721 10.758 12.480
two 100 1.713 10.721 12.435
one 100 1.721 10.741 12.462
two 300 1.713 10.712 12.425
one 300 1.721 10.728 12.449

To compare the power dissipation of Normal and LUT
Load instructions more precisely, two set of test vec-
tors were generated each having 1000 test vectors, one
set only contained Normal instructions while the other
one only contained the LUT-Load instructions. Later
power analysis was performed using these two set of
test vectors. Table VII shows the power comparison of
Normal and LUT-Load instructions using 1000 test vec-
tors for the instruction decompressor.

Table 7: Power comparison of Normal and LUT-Load
Instructions

Instruction
Type

Leakage
Power(mW)

Dynamic
Power(mW)

Total
Power(mW)

Normal 1.616 10.239 11.855
LUT-Load 1.702 10.435 12.138

 Table VIII shows the synthesis results for the FlexCore
processor with full interconnect configuration, synthe-
sized with medium effort and timing constraint of 3 ns.

Table 8: Synthesis results of the FlexCore processor

Benchmark
EEMBC-
Telecom

No. of
Instruc-

tions

Cycle
Count

Total
Power
(mW)

Estimated
Area
(μm2)

autcor 1399 16110 7.30

49527fft 1730 136596 8.91
viterb 1639 265291 7.80

conven 1457 262039 7.45

9 Discussion on synthesis results

The results of power analysis shows that the power
consumption of the instruction decompressor slightly
decreases with reducing the LUT-Load instruction inter-
val, which is obvious because less switching would take

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

234

place. It means that, applications that will require less
LUT reloads would consume less power, not by much.
Another observation is that the power consumption
with updating a single entry each of two LUTs is lower
than with updating a single entry of one LUT through a
single LUT-Load instruction. This is because more LUT-
load instructions would be required for loading all the
entries of eight LUTs, than with updating a single entry
of one LUT through a single LUT-Load instruction. Fig.
14 shows the power results with 20000 test vectors hav-
ing less randomness for the instruction decompressor,
synthesized with medium effort and timing constraint
of 2.5 ns using three different process technologies.

Figure 14: Power comparison of Instruction Decom-
pressor

If we compare the power consumption of the instruc-
tion decompressor between the three different tech-
nologies, we can see that the power consumption is
higher for 90nm than for 130nm technology, but the
worst case delay and area is smaller for 90nm than for
130nm. As the timing constraint for both the technolo-
gies is same, the higher worst case delay and area for
130nm suggests that it should have higher power con-
sumption than for 90nm technology, since it has to
put more effort to meet this timing constraint which
results in higher worst case delay and area. The tech-
nology files used for 90nm technology, can be a reason
for these unexpected results. The LUT-Load instruction
interval do not affect the power consumption of the
instruction decompressor to a greater extent, which
was shown previously in software [35] and this imple-
mentation confirms the idea in hardware. The major
drawback of having more LUT-Load instructions is that
the processor needs to be stalled each time the con-
tents of a particular LUT is updated. So the LUT Load
instruction interval must to be kept down for optimum
performance. After observing the wide control word of
the FlexCore processor, one can see that some combi-
nation of control bits e.g. (MULTA, MULTB, READ ADDR1
REG, READ ADDR2 REG) are most of the time zero and
the compression scheme takes advantage of this fact.
Also if we see the compressed instructions produced
by the compression algorithm, most of the bits remain
zero repeatedly, which can help to reduce power con-
sumption because less switching would take place. If

we look at the power consumption of individual LUT
groups, more power is being consumed by the LUT
groups having large size, which is obvious. It will be a
good idea to reduce the sizes of larger LUT groups and
see its effect on the power consumption of instruction
decompressor. The synthesis results for the Instruction
decompressor were obtained using a timing constraint
of 2.5 ns, but synthesis results for the FlexCore pro-
cessor are obtained using a timing constraint of 3 ns,
which are presented here as reference and the differ-
ence of timing constraint between the two designs will
have an impact on the area and power results.

10 Conclusion

The aim of this research was to design an instruction
decompressor for a very long instruction word (VLIW)
processor to save the memory footprint based on an
optimal compression scheme. The instruction decom-
pressor is designed and implemented in VHDL and syn-
thesized using Cadence RTL Compiler into three differ-
ent process technologies 130-nm, 90-nm, and 65-mn
provided by the STMicroelectronics. We have shown
that various parameters of instruction decompressor
greatly impacts the overall performance of FlexCore
in hardware in terms of power, area and timing. These
parameters includes the formation of LUT groups,
the size of LUTs and the LUT-Load instruction Interval
meaning how often the LUTs needs to be updated and
how many LUTs are updated through a single LUT-Load
instruction. It will be interesting to compare the aver-
age toggle rate on NISA for the test vectors which are
used to compute the power results for the instruction
decompressor, to the average toggle rate on NISA for
the benchmark applications which are used to com-
pute the power results for the FlexCore. It can give us
a better idea about the power consumption of instruc-
tion decompressor. The instruction decompressor im-
plemented needs to be verified, for this we need to have
real traces of compressed instructions produced by the
compression algorithm using various benchmark ap-
plications. After getting these real traces of compressed
instructions the accurate power analysis of the instruc-
tion decompressor would be possible. Later it would be
interesting to see the integration of instruction decom-
pressor into the FlexCore processor and verify the whole
design using some benchmark applications.

11 Acknowledgment

This work is partially supported by the Chinese Aca-
demic of Sciences (CAS) and The World Academy of Sci-
ences (TWAS).

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

235

12 References:

1. V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson,
“Zynq-based System for Extracting Sorted Subsets
from Large Data Sets”, Informacije MIDEM-Journal
of Microelectronics, Electronic Components and
Materials Vol. 45, No. 2 (2015), 142 – 152.

2. Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and
Abdullah Buzdar, “Distance and Speed Measure-
ments using FPGA and ASIC on a high data rate
system” International Journal of Advanced Com-
puter Science and Applications (IJACSA), 6(10),
2015, 273 – 282.

3. J. Noguera, R.M. Badia, “HW/SW codesign tech-
niques for dynamically reconfigurable architec-
tures” IEEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 10, no. 4, pp. 399-415, Aug.
2002.

4. M. D. Edwards, et al., “Acceleration of software
algorithms using hardware/software co-design
techniques”, J. Syst. Architecture, vol. 42, no. 9/10,
pp.1997.

5. ARM Inc., [Online]. Available: http://www.arm.
com/.

6. Yun Wu, J. Nunez-Yanez, R. Woods, D.S. Nikolo-
poulos, “Power modelling and capping for het-
erogeneous ARM/FPGA SoCs”,IEEE International
Conference on Field-Programmable Technology
(FPT), Dec. 2014, pp 231-234

7. D. Gebhardt, Junbok You, K.S. Stevens, “Design
of an Energy-Efficient Asynchronous NoC and Its
Optimization Tools for Heterogeneous SoCs” IEEE
Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 30, no. 9, pp. 1387-1399,
Sept. 2011.

8. M.D. Grammatikakis, A. Papagrigoriou, P. Petrakis,
G. Kornaros, “Monitoring-Aware Virtual Platform
Prototype of Heterogeneous NoC-Based Multi-
core SoCs”,IEEE International Conference on Digi-
tal System Design (DSD), Sept. 2013, pp 497-504

9. B. Ristau, T. Limberg, G. Fettweis, “A Mapping
Framework for Guided Design Space Exploration
of Heterogeneous MP-SoCs”,IEEE International
Conference on Design, Automation and Test in
Europe (DATE), March 2008, pp 780-783

10. Wu-An Kuo , TingTing Hwang, A.C.-H. Wu, “A pow-
er-driven multiplication instruction-set design
method for ASIPs” IEEE Trans. Very Large Scale In-
tegration (VLSI) Systems, vol. 14, no. 1, pp. 81-85,
Jan. 2006.

11. Yosi Ben Asher, Irina Lipov, Vladislav Tartako-
vsky, Dror Tiv, “Using Multi-op Instructions as a
Way to Generate ASIPs with Optimized Pipeline
Structure”,IEEE International Symposium on Field-
Programmable Custom Computing Machines
(FCCM), May 2014, pp. 29.

12. Hong Chinh Doan, H. Javaid, S. Parameswaran,
“Using Multi-op Instructions as a Way to Gener-
ate ASIPs with Optimized Pipeline Structure”, IEEE
International Conference on Design, Automation
and Test in Europe (DATE), March 2014, pp. 1-6

13. M. Jacome and G. de Veciana “Lower bound on
latency for VLiW ASIPs”, Proc. of ACM/IEEE Inter-
national Conference on Computer Aided Design
(ICCAD), 1999

14. K. Keutzer, Malik S., and A. R. Newton, “From ASIC
to ASIP: The next design discontinuity,” in Proc. Int.
Conf. on Computer Design, 2002, pp. 84–90.

15. M. Thuresson, M. Själander, M. Björk, L. Svensson,
P. Larsson-Edefors, and P. Stenström, “FlexCore:
Utilizing exposed datapath control for efficient
computing,” Springer J. of Signal Processing Sys-
tems, vol. 57, no. 1, pp. 5–19, Oct. 2009.

16. T. Schilling, M. Själander, and P. Larsson-Edefors,
“Scheduling for an embedded architecture with a
flexible datapath,” in Proc. IEEE Computer Society
Annual Symp. on VLSI, 2009, pp. 151–156.

17. J. Hughes, K. Jeppson, P. Larsson-Edefors, M.
Sheeran, P. Stenström, and L.J. Svensson, “Flex-
SoC: Combining flexibility and efficiency in soc
designs,” in Proc. IEEE NorChip Conf., 2003.

18. M. Själander, M. Larsson-Edefors, and M. Björk, “A
flexible datapath interconnect for embedded ap-
plications,” in Proc IEEE Computer Society Annual
Symp. on VLSI, 2007, pp. 15–20.

19. U. Jälmbrant and E. der Hagopian, “Improved con-
figurability with FlexSoC,” Msc. thesis, Chalmers
University of Technology, Mar. 2009.

20. Tung Thanh Hoang, Ulf Jälmbrant, Erik der Hago-
pian, Kasyab P. Subramaniyan, Magnus Själander,
and Per Larsson-Edefors, “Design Space Explora-
tion for an Embedded Processor with Flexible Da-
tapath Interconnect,” in Proc. of IEEE Int. Conf. on
Application-specific Systems, Architectures and
Processors, 2010, pp. 55-62.

21. J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Elsevier
Publisher Inc., 2007.

22. MIPS Technologies Inc., [Online]. Available: http://
www.mips.com/.

23. Bita Gorjiara and Daniel Gajski, “Custom Proces-
sor Design Using NISC: a Case-Study on DCT Al-
gorithm,” in Workshop on Embedded Systems for
Real-Time Multimedia, September 2005.

24. Bita Gorjiara, Mehrdad Reshadi, and Daniel Gajski,
“Designing a Custom Architecture for DCT Using
NISC Design Flow,” in Asia and South Pacific Con-
ference on Design Automation, 2006.

25. B. Gorjiara, D. Gajski, “FPGA-friendly code com-
pression for horizontal microcoded custom IPs,”
Proceedings of the 2007 ACM/SIGDA 15th inter-

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

236

national symposium on Field programmable gate
arrays (ISFPGA), ACM Press 2007.

26. M. Reshadi and D. Gajski, “A cycle-accurate compi-
lation algorithm for custom pipelined datapaths,”
in Proc. 3rd IEEE/ACM/IFIP Int. Conf. on Hardware/
Software Codesign and System Synthesis, 2005,
pp. 21–26.

27. B. Gorjiara, M. Reshadi, and D. Gajski, “Merged dic-
tionary code compression for FPGA implementa-
tion of custom microcoded PEs,” ACM Trans. Re-
configurable Technol. Syst., vol. 1, pp. 11:1–11:21,
Jun. 2008.

28. Embedded Microprocessor Benchmark Consor-
tium (EEMBC), [Online]. Available: http://www.
eembc.org.

29. Muhammad Waqar Azhar, Tung Thanh Hoang,
and Per Larsson-Edefors, “Cyclic Redundancy
Checking (CRC) Accelerator for the FlexCore Pro-
cessor,” in Proc. of EUROMICRO Conf. on Digital
System Design, 2010, pp. 675-680.

30. Muhammad Waqar Azhar, Magnus Själander,
Hasan Ali, Akshay Vijayashekar, Tung Thanh
Hoang, K. K. Ansari, and Per Larsson-Edefors,
“Viterbi Accelerator for Embedded Processor Da-
tapaths,” in Proc. of IEEE Int. Conf. on Application-
specific Systems, Architectures and Processors,
2012.

31. Cadence EDA Tools. [Online]. Available:
www.cadence.com/en/default.aspx

32. STMicroelectronics. [Online]. Available: www.
st.com/web/en/home.html

33. Kasyab P. Subramaniyan, Erik Ryman, Magnus Sjä-
lander, Tung Thanh Hoang, Mafijul Md Islam, and
Per Larsson-Edefors, “FlexDEF: A Toolchain Frame-
work for Processor Development,” in Proc. of IEEE
Conf. on Ph.D. Research in Microelectronics and
Electronics, 2011, pp. 37-40.

34. Erik Ryman, Kasyab P. Subramaniyan, Tung Thanh
Hoang, Mafijul Md Islam, Magnus Själander, and
Per Larsson-Edefors, “FlexTools: Design Space
Exploration Tool Chain from C to Physical Imple-
mentation,” in Proc. of the Fifth Annual Cadence
User Conf., 2010.

35. M. Thuresson, M. Själander, L. Svensson, and P.
Stenstrom, “A flexible code compression scheme
using partitioned look-up tables,” in Proc. Int.
Conf. on High Performance Embedded Architec-
tures and Compilers, 2009, pp. 95–109.

Arrived: 26. 05. 2015
Accepted: 24. 12. 2015

A. R. Buzdar et al; Informacije Midem, Vol. 45, No. 4 (2015), 225 – 236

