
85

Original scientific paper

 MIDEM Society

Multi-hop communication in Bluetooth Low
Energy ad-hoc wireless sensor network
Branko Skočir1, Gregor Papa1,2, Anton Biasizzo1,2

1Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
2Jožef Stefan Institute, Ljubljana, Slovenia

Abstract: This paper presents a multi-hop mechanism for Bluetooth Low Energy (BLE) 4.0 ad-hoc wireless sensor network (WSN).
The BLE 4.0 protocol supports only the piconet topology and does not support data transfer over multiple nodes. To overcome this
limitation a mechanism to relay sensor data over multiple BLE 4.0 nodes using Master/Slave switching was developed. The mechanism
dynamically creates communication paths within the BLE ad-hoc sensor network where all BLE nodes are identical. The sensor data
query is initiated from a designated node and forwarded through the dynamically build network. The sensor data are collected
over the same path, back to the designated node. The mechanism does not perform route discovery therefore no routing tables
are needed. Using this mechanism, the range of the sensor data acquisition can be extended from BLE range to whole BLE sensor
network.

Keywords: Bluetooth Low Energy (BLE); wireless sensor network; multi-hop mechanism

Multi-hop komunikacija v Bluetooth Low Energy
ad-hoc brezžičnem senzorskem omrežju
Izvleček: Članek predstavlja multi-hop mehanizem za Bluetooth Low Energy (BLE) 4.0 ad-hoc brezžično senzorsko omrežje. BLE 4.0
protokol omogoča kreiranje samo piconet topologije in ne podpira prenosa podatkov preko več vozlišč. Da bi obšli to omejitev smo
razvili mehanizem za posredovanje senzorskih podatkov preko več BLE 4.0 vozlišč s preklapljanjem med Master in Slave načinom
delovanja. Mehanizem v BLE ad-hoc brezžičnem senzorskem omrežju, kjer so vsa vozlišča enaka, dinamično ustvarja komunikacijske
poti. Poizvedba o senzorskih podatkih se sproži iz točno določenega vozlišča in se posreduje prek dinamično sestavljenega omrežja.
Podatki posameznih senzorjev se posredujejo nazaj po isti poti do vozlišča, ki je poizvedbo sprožil. Glavna prednost tega mehanizma
je vzpostavitev senzorskega omrežja brez usmerjevalnih tabel. Z uporabo tega mehanizma se pokritost z BLE lahko razširi na celotno
senzorsko omrežje.

Ključne besede: Bluetooth Low Energy (BLE); brezžično senzorsko omrežje; multi-hop mehanizem

* Corresponding Author’s e-mail: b.skocir@gmail.com

Journal of Microelectronics,
Electronic Components and Materials
Vol. 48, No. 2(2018), 85 – 95

1 Introduction

Bluetooth Low Energy (BLE) is a communication tech-
nology developed for low power consumption and low
cost applications. It was introduced in 2006 as “Wibree”
and in 2010 merged into the main Bluetooth standard
with the adoption of the Bluetooth Core Specification
Version 4.0 [1].

Due to the low energy consumption and ease of use
the BLE technology is used in various devices, rang-
ing from health care, fitness, home automation, toys,
transportation and industry. Because of its low power

consumption design, it is especially suitable for coin
cell battery communication devices like wireless sen-
sors. Several wireless sensors can form a Wireless Sen-
sor Network (WSN) [2] that can acquire environmental
data and send it through the network to the main de-
vice or gateway. From here data can be sent over ex-
isting network infrastructure to the remote client thus
making a WSN and associated sensors a part of Internet
of Things (IoT) [3].

In contrast to other wireless technologies, that are
also used for wireless sensor networks like Zigbee and

86

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

ANT+, the BLE 4.0 only supports Peer-To-Peer (P2P) and
star topology with no multi-hop capabilities. Although
the BLE 4.0 protocol is already offering a wide spread of
possible usage the data relaying over multiple nodes
within the network would highly increase the number
of potential uses.

While BLE lacks the multi-hop capabilities, there have
been some attempts to implement multi-hop func-
tionality using the Bluetooth application layer. Some
implementations of multi-hop data transfer with BLE
4.0 are presented by Mikhaylov and Tervonen [4] as
well as by Maharjan, Witkowski and Zandian [5]. In [4]
a mechanism that relays data to a node with known
address over intermediate nodes was suggested. The
proposed mechanism was implemented on only four
nodes carrying out two to three hops. The emphasized
problem in the article is the high route time discovery,
which takes about 25 seconds on average and is due
to the service discovery time and data exchange for
route establishment. In [5] the multi-hop mechanism
is based on a tree network with unique node identity
number addressing. The presented implementation of
this approach limits the number of nodes that can be
connected to each central device to at most three. The
selected range of node addresses enables the forming
of tree topology network up to level 5.

In this paper a mechanism that enables multi-hop data
transfer to a central node over multiple BLE 4.0 nodes
is presented. A wireless sensor network is constructed
using tree topology. All wireless sensor nodes are iden-
tical and can transfer acquired data and/or relay data
from the connected nodes. An evaluation wireless sen-
sor network with 7 nodes was built to validate our mul-
ti-hop mechanism. Each node is composed of Bluegiga
BLE113 [6] communication module mounted on break-
out board [7], temperature sensors [8] with additional
peripheral hardware, and power supply. BLE node was
implemented on our developed demonstration evalu-
ation board.

The rest of the paper is organized as follows: in the fol-
lowing section an overview of BLE 4.0 technology is
presented. The third section is focused on the related
work in BLE 4.0 multi-hop data transfer. In the fourth
section our multi-hop data transfer mechanism is de-
scribed. In the fifth section the implementation of the
mechanism is described and the results are given. The
paper concludes with section six.

2 BLE 4.0 technology

Bluetooth Low Energy (BLE) 4.0 is a wireless commu-
nication technology that allows data to be transmit-

ted over the air between two BLE devices. It uses the
2.400 GHz - 2.4835 GHz Industrial, Scientific and Medi-
cal (ISM) band. BLE uses frequency hopping spread
spectrum modulation technique called Direct-Se-
quence Spread Spectrum (DSSS) for interference mini-
mization and security maximization [9]. In contrast to
the classic Bluetooth that uses 79 1MHz channels the
BLE frequency hopping spans over 40 2MHz channels.
37 channels are used for data transfer, whereas the re-
maining three channels are reserved for advertising [1].

Figure 1: BLE 4.0 link layer state diagram

The connection and data transfer is achieved through
the link layer state machine as shown in Figure 1. In
Advertising state, the device has an advertiser role and
transmits the advertisement packet on three advertising
channels. The advertisement packet can contain from 2
to 31 bytes of advertisement data. Advertisement data
can be intercepted by the devices that are in Scanning
state. Depending on the gathered advertisement data
the scanner can demand additional data, initiate the
connection with the advertiser, or ignore the advertiser.
After the connection is established both devices are in
Connection state. Typically, the device that was initially
scanning assumes the role of a master device whereas
the advertising device becomes a slave device. While
connected the devices cannot change their role.

When two devices are connected they form a master/
slave pair as shown in Figure 2a. According to Bluetooth
4.0 standard a device cannot simultaneously assume
master and slave role. Furthermore, while a master de-
vice can connect to several slave devices a slave device
can connect only to one master device. This limits the
possible network configurations to a P2P pair and to
a simple star topology known as piconet topology, as
depicted in Figure 2b.

Once the connection is established the devices can
transfer data over 37 data communication channels.
The data can be sent in unencrypted or encrypted
packets that can have 0 to 31 bytes of Protocol Data
Unit (PDU) payload [1]. Depending on the devices link
layer state the PDU payload can contain the advertis-

87

ing or scanning device addresses and advertise or
scanning response data. The encryption is achieved
with security manager protocol (SMP) key distribution
between master and slave during the pairing process.

The BLE 4.0 stack is composed of several protocol layers
which can be divided into two logical entities: Control-
ler and Host, as shown in Figure 3.

The Controller is composed of physical layer (PHY) and
link layer (LL). Hardware implementation of Physical
Layer is composed of a balun and an antenna which
forms a radio frequency (RF) transceiver while the lay-
ers from Link Layer and above reside in a SoC.

The RF transceiver as a part of PHY is responsible for
data transfer between devices.

The link layer from the Controller manages the transmis-
sion and reception of data packets with respect to the
flow control and connection parameters established
with other nodes. If device is in scanning, advertising
or connection mode the link layer manages the data re-
ceiving and transmitting. It also provides first line of se-
curity by allowing the data exchange only from selected
nodes. The connectivity between Controller and Host
stack is managed by host controller interface (HCI).

Following the HCI layer are the Host layers. The logical
link control and adaptation protocol (L2CAP) manages
the data multiplexing for the attribute protocol (ATT)
and security manager protocol (SMP). The SMP offers
different security modes, data encryption and authen-
tication services. The ATT manages the discovery of
server-client attributes and enables the attributes read-
ing and writing functionalities. The discovery and char-
acteristics exchange of the BLE 4.0 protocol services are
defined by the generic attribute profile (GATT) frame-
work built on top of the ATT layer. The uppermost lay-
ers of BLE 4.0 stack are the generic access profile (GAP)
and the applications layers. The GAP manages the com-
munication between lower layers and applications and

is responsible for establishing different modes of op-
eration such as scanning and advertising [10].

BLE 4.0 protocol stack provides the device with all the
support to operate in master or slave mode individual-
ly. Unfortunately, no support is provided for the device
to operate in master and slave mode simultaneously
thus BLE 4.0 protocol does not support multi-hop data
transfer.

Figure 3: BLE 4.0 protocol stack

3 Current ble 4.0 multi-hop solutions

Although the BLE 4.0 emerged in 2010 there are cur-
rently just a few multi-hop implementations. In the
first multi-hop implementation [4] the data transfer is
achieved by implementing a new multi-hop GATT layer
service. A service is divided into two parts: route di-
scovery and data transfer. A transmitting node has a
known end-node address so at first a route over inter-
mediate nodes has to be established. At each route
generation a gateway node to the target node, the
target node, and number of required hops are stored
in each node. After route discovery is completed the
data is sent through the known route to the target
node. The prime challenge at service implementation,
as authors emphasized, was advertiser/scanner ope-
rational state switching and memory availability. The
working multi-hop service was implemented in four
nodes and results were presented. In another imple-
mentation of multi-hop data transfer [5] a tree network
topology is used.

This implementation distinguishes three different
node types: root node as main or central device, inter-
mediary node that act as a peripheral or central device
depending on connection initiation, and leaf nodes as
the peripheral devices in the tree structure. Intermedi-
ary node is constructed from two devices: a central and

Figure 2: BLE Master/Slave connection options

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

88

peripheral device, which are interconnected with I2C
bus [11]. In their implementation the central device can
be connected to at most 3 peripheral devices and with
2 byte addressing the tree network can be extended up
to level 5. The tree network topology was successfully
implemented and the results were presented. For futu-
re work authors emphasize on reducing the negative
effects of node failures thus hopefully increasing the
robustness of the network.

4 Multi-hop data acquisition mechanism

Data from distant nodes cannot be transferred using a
direct connection, for instance if we have three nodes
A, B, and C, as shown in Figure 4, where node C is not
visible from node A, node A cannot directly acquire
data from node C. In order for node A to acquire data
from C, node B must first acquire data from C and then
relay them to node A. To do this, node B must first be-
come a master node, detect node C using scanning,
make a connection, and retrieve data from node C.
To relay data it must switch back to slave mode and
advertise that the gathered data are available. The
switch from slave to master operation in node B is ini-
tiated by node A inquiry.

Figure 4: Distant BLE nodes

The basis of our multi-hop communication mechanism
is the ability of each node to temporary assume the
master role and to acquire the data from not already
processed nodes, and relay acquired data to its master
node along with its sensor data. Since this procedure
is recursively repeated on each node a communication
tree is dynamically generated on each data inquiry and
can change with each query depending on the nodes
availability and their latency.

The multi-hop communication mechanism can be
viewed as a two phase protocol:
1. In first phase the communication tree is build.

This is started when root node begins to collect
available idle nodes. A node in master mode con-
nects to the available idle nodes and sends COL-
LECT command to claim exclusive access to child
node. Child node records connected master node
as its parent node in order to prevent connections
from other master nodes. This procedure is recur-

sively repeated on each child node: it switches to
master mode and start collecting available nodes.
First phase is finished when there are no available
nodes.

2. In second phase, every non-root node has a par-
ent node which was determined during the first
phase. Sensor data are reported back from leaf
nodes towards the root node. The report is made
in similar fashion as collecting: the node with ac-
quired data from all its children switches back to
slave mode and advertises that it has required
data. When the parent detects that its child has
available data, it connects to the child and initi-
ates data transfer by sending READ command.
When the data transfer from all children nodes is
finished, the children reinitialize as idle nodes.

In the presented mechanism each master node con-
nects twice to each of its children: first to collect avail-
able idle nodes, and then to request acquired data
from child node. Since actions of the slave nodes occur
when they are connected to a parent node, they are
triggered by commands issued by parent node using
established data connection. The multi-hop communi-
cation mechanism can be viewed as building the com-
munication tree by sending commands towards leaf
nodes and gathering sensor data in the opposite direc-
tion. The global root node initiates the data acquisition
and triggers the generation of the communication net-
work as depicted in Figure 5. Global root node operates
as a master node only, thus its functionality can be in-
terpreted as a subset of the sensor node functionality.

Figure 5: Command and data path in tree topology
network

Let us present example with only three nodes to illus-
trate the concept of our multi-hop mechanism. Node A
and node C cannot be directly connected due to long
distance or some obstacle, while node B is reachable

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

89

by both nodes. Let us assume that the data inquiry is
started from node A. The behaviour of the multi-hop
mechanism is depicted in Figure 6 and Figure 7 where
master nodes are denoted by black shading and slave
nodes are white.

Figure 6: Communication tree formation

Figure 6 describes the communication tree formation
of multi-hop communication mechanism:
- Initially all nodes are idle and are advertising their

presence (Figure 6a).
- Node A is selected as a root node (inquiry node),

node A became a master node and is scanning
for neighbour nodes. It detects node B as an idle
node (Figure 6b).

- Since node B is idle, node A connects to node B
and issues a command to node B to start its own
data inquiry (Figure 6c).

- Both node A and node B are scanning, however
node C is reachable only by node B. Node B de-
tects node C as an idle node (Figure 6d).

- While node A is still scanning nodes (for the data
inquiry results) the node B connects to node C
and issues a command to node C to start its own
data inquiry (Figure 6e).

- All three nodes are scanning; node A and node B
are scanning for data results, while node C is scan-
ning for an idle node (Figure 6f).

The first phase terminates when there is no available
idle node. The scanning of the node, which is search-
ing for an idle node, is terminated by a predetermined
timeout. The timeout must be long enough to guar-
antee the detection of an idle node in the vicinity (we
used a value of 1 second).

Figure 7 describes the data acquisition of multi-hop
communication mechanism:
- After the timeout in node C (Figure 7a), node C

reads its sensor data and switches from scanning
mode to advertising mode indicating that it has
data available.

- Node B is scanning for its child nodes with sen-
sor data and detects that node C have data ready
(Figure 7b). Note that while node A is also scan-

ning for nodes with data ready the node C is not
its child and would be ignored even if it was de-
tected.

- Node B connects to node C and node C sends
its sensor data to node B. Node B adds its sensor
readings to the received data from node C (Figure
7c).

- Node B finishes its scanning since it has processed
all its children. Then it switches to advertising
mode indicating that it has sensor data available.
Node A which is scanning for its child nodes with
sensor data ready, detects that node B has data
ready (Figure 7d).

- Node A connects to node B and node B sends its
sensor data to node A. Node A adds its sensor
readings to the received data from node B (Figure
7e).

- Since Node A is the root node it report all gath-
ered sensor data and switch from master mode to
advertising mode (Figure 7f).

From the single node point of view the multi-hop data
acquisition mechanism is composed of:
- Master mode operation, which is further divided

to operations:
- Collecting all available neighbouring slave

nodes and claiming exclusive access to the
collected slave nodes. This is achieved by
sending COLLECT command to all free slave
nodes. Since the master node doesn’t know
how many available slave nodes are in its vi-
cinity this operation has to be stopped using
timeout.

- Requesting sensor data from child node when
the child node has acquired all available sen-
sor data from its descendant nodes. This is
achieved by sending READ command.

- Slave mode operation, which consists of follow-
ing operation:
- Idle operation: the node advertises that it is

available and has no parent node. The node
waits for the connection from any master
node. After the node is connected to a master
node, it accepts only COLLECT command. On

Figure 7: Data acquisition

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

90

the receipt of this command it records parent
node address and advertises parent node ad-
dress along with its current state

- Serving data operation: the node has all avail-
able data from its descendant nodes. It adver-
tises its parent node address and its current
state. After the node is connected from the
parent node it transfers the acquired data
to the parent node. When the sensor data is
transferred the node erases parent node ad-
dress and restarts with the idle operation.

The simplified procedure of the multi-hop mechanism
is:

while true {
 advertise idle
 while not (cmd = COLLECT) {} // wait for COLLECT command
 record connecting node
 master_mode
 advertise parent and data_ready
 while not (cmd = READ) {} // wait for READ command
 send acquired data
 erase parent node address
}
The master mode operation of the multi-hop mecha-
nism is:

start scanning // switch to master mode
while not timeout {
 if node_available {
 add node to set
 connect
 send COLLECT cmd
 }
}
foreach node in set {
 if node data_ready {
 Connect node
 Send READ cmd
 }
}

The multi-hop mechanism was implemented using
finite state machine. The states identify the current
mode of operation of the node. Initially we used four
states: IDLE, COLLECT, READ, and READY. States IDLE and
READY states correspond to slave node operation and
states COLLECT and READ correspond to master node
operation. However, the resulting connection trees
using these states were quite deep. This was because
each slave node that entered the COLLECT state on re-
quest of a master node immediately started collecting
free nodes in its vicinity and thus also competed with
its master node. This is undesirable because it results
in very deep connection trees with longer data acqui-

sition time. To impose breadth-first generation of the
connection tree generation an additional slave state
PREPARE between the IDLE state and COLLECT state was
introduced. This way the collected slave nodes start
collecting remaining nodes after the master node fin-
ished the collect operation. Consequently, correspond-
ing master state TRIGGER has to be added to control
the additional slave state transition.

There are similar problems on the data acquisition part
of the mechanism hence the FREE state was introduced
between READY state and IDLE state to delay the releas-
ing of slave nodes, and RELEASE state between READ
state and READY state in order to control the state tran-
sition. The final finite state machine of the multi-hop
node is depicted in Figure 8.

Figure 8: Master and Slave state mechanism

Initially all BLE nodes operate in slave mode and advertise
their presence using unique 128bit multi-hop service UUID.
Besides the multi-hop service identification master nodes
require also additional data: whether the slave node is avail-
able and if the node has acquired data from its descend-
ant nodes. While this information could be gathered by es-
tablishing the data connection such solution would cause
larger delays since a slave node can connect to a single
master node and while connected it is inaccessible to other
master nodes. Best solution is to advertise current state of
the node. Furthermore, to eliminate the unnecessary con-
nections to the nodes, which are already collected by some
node the slave node advertises the ID of its parent node.
This way the master node can filter out the slave nodes
which do not respond to it. Since there are no suitable pre-
determined advertisement packets in the GATT layer of BLE
4.0 protocol stack a custom advertising packet is used. The
final advertising data are shown in Table 1.

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

91

Table 1: Advertising packet

ADV packet
Custom

128bit
UUIDDevice

state
Masters MAC

address
Data Length 1 6 16

Packet length 9 18

The advertising data is composed out of 27 bytes. Each
advertising packet occupies one byte for packet type
ID, one byte for packet length, and packet data. Device
state occupies 1 byte and is a copy of the current state
of the device. The master node ID is the MAC address
of the master node. The master node ID of the node is
initialized to NULL in the IDLE state. After first connec-
tion from a master node its MAC address is copied into
the advertising packet and only connections from this
master node is allowed until the node is released. Then
the node enters the IDLE state and the master node ID
is restored to NULL. Consequently, the master node ID
of the root node is always NULL.

Generic multi-hop state machine implementation is:

1 while true {
2 switch (state) {
3 case IDLE: // slave mode
4 if (cmd=PREPARE) {
5 parent = master_node
6 state = PREPARE
7 advertise(parent,state)
8 }
9 case PREPARE: // slave mode
10 if (cmd = COLLECT && master_mode = parent) {
11 state = COLLECT
12 start_scan() // switch to master mode
13 }
14 case COLLECT: // master mode
15 if timeout state = TRIGGER
16 else if available_idle(node) {
17 connect(node)
18 send_cmd(PREPARE)
19 add_to_children_set(node)
20 }
21 case TRIGGER: // master mode
22 if children_set_processed() state = READ
23 else if available_prepare(node, my_address) {
24 connect(node)
25 send_cmd(COLLECT)
26 }
27 case READ: // master mode
28 if children_set_processed() state = RELEASE
29 else if available_ready(node, my_address) {
30 connect(node)
31 data_request_cmd(READ)
32 }
33 case RELEASE: // master mode
34 if children_set_processed() {
35 state = READ

36 advertise(parent,state)
37 }
38 else if available_free(node) {
39 connect(node)
40 send_cmd(RELEASE)
41 }
42 case READY: // slave mode
43 if (cmd = READ && master_mode = parent) {
44 send_sensor_data()
45 state = FREE
46 advertise(parent,state)
47 }
48 case FREE: // slave mode
49 if (cmd = RELEASE && master_mode = parent) {
50 clear parent
51 state = IDLE
52 advertise(parent,state)
53 }
54 }
55 }

The states of the multi-hop mechanism are:
- IDLE state: the node is in slave mode but it has no

parent node therefore it is available. It operates
as a slave and advertises its state. On connection
from a parent node using the PREPARE command
the state changes to PREPARE state.

- PREPARE state: the node is in a slave mode but it is
reserved by the parent node. It advertises its state
and its parent node. It accepts the connections only
from its parent node and the only viable action is to
change to COLLECT state by COLLECT command.

- COLLECT state: the node is in master mode. In the
master mode the advertisement is stopped. It
scans the neighbouring nodes, collects available
nodes, records them and sends them TRIGGER
command for an exclusive access. After reason-
able timeout, the collecting process is stopped.
The node then switches to TRIGGER state if there
are some collected nodes, otherwise the node
switches to READY state.

- TRIGGER state: the node is in the master mode. The
collected nodes are triggered to a COLLECT master
state in order to acquire data from distant nodes.
The node scans the neighbouring nodes and when
a slave node, advertising that it was collected by
this node, is found, TRIGGER command is given to
this slave node. After all collected slave nodes are
processed, the node switches to READ state.

- READ state: the node is in the master mode. It
scans the neighbouring nodes and when a slave
node, advertising that it has data ready for this
node, the read process is triggered using READ
command. After all collected slave nodes are pro-
cessed, the node switches to RELEASE state.

- RELEASE state: the node is in the master mode. It
scans the neighbouring nodes and when a slave
node, advertising that it could be freed is detect-

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

92

ed, RELEASE command is given to free the collect-
ed slave node. After all collected slave nodes are
processed, the node switches to READY state.

- READY state: the node is in the slave mode. When
the data connection from the parent node is es-
tablished the acquired data along with the local
node sensor data are sent to the parent node.
After the data transfer is completed the node
switches to FREE state.

- FREE state: the node is in slave mode. It advertises
that it could be freed. On the receipt of RELEASE
command from the parent node it re-initializes all
data structures and switches to IDLE state.

Initially all BLE nodes operate in slave mode. To initi-
ate the data acquisition on a selected BLE node a com-
mand is issued on its UART peripheral interface to as-
sume the role of the root node. At this point the root
node starts collecting neighbouring nodes, acquires
their data, and reports the acquired data over the UART
peripheral interface.

5 Implementation and results

For testing and evaluation of the multi-hop communi-
cation mechanism a custom measurement board was
developed. Peripheral hardware consists of power sup-
ply, USB and UART interface, LM75B temperature sen-
sor [8], and a Bluegiga BLE113 breakout board [7].

Table 2: BLE113 specifications

Device Bluegiga BLE113
Supply voltage 2V – 3.6V
Peripheral interface UART, SPI, I2C,PWM,GPIO, ADC
TX consumption 18.2mA
RX consumption 14.3mA
Sleep mode
consumption 0.4uA

TX power 0dBm to – 23dBm
RX sensitivity -93dBm

SoC

CC2541 chip:
 - 8051 CPU,
 - 32MHz clock,
 - 128kB or 256kB Flash
 - 8kB SRAM

Smart stack GAP, GATT, L2CAP and SM
Bluetooth smart profiles

Max connections in
master mode 8

Throughput 100kbps +

The main specifications of BLE113 module are pre-
sented in Table 2. The module is based on a CC2541

SoC from Texas Instruments with integrated 8051
CPU, Bluetooth radio and software stack [12]. Module
offers a wide range of peripheral interface on 17 con-
figurable I/O ports, two configurable I/O ports with 20
mA driving capability and two ports that can be used
as digital I/O or I2C communication channel. BLE113
module configurable ports offer a broad assortment of
peripheral functionality:
- UART and SPI communication,
- three timers that each can offer timer, counter or

PWM functionality,
- up to 12bits of resolution ADC converter

BLE113 is capable of managing 8 slave devices in
master mode with over 100kbps throughput. Mod-
ule is mounted on the BLE113 breakout board which
is installed on a peripheral hardware board with tem-
perature sensor. The communication between BLE113
module and temperature sensor is implemented with
I2C interface.

Software was written in BGScript language [13], which
is event-driven BASIC-like application scripting lan-
guage. Each event handling subroutine can consist out
of numerous instructions and each instruction can be
executed in 1-2ms [13]. Since the BLE113 module in-
corporates 8051 MCU with several GPIO ports as well
as some general purpose communication protocols
(e.g. I2C, SPIO) we were able to develop a fully stan-
dalone BLE device without the external CPU and/or
additional memory. BGScript incorporates additional
APIs for managing Bluetooth connections and various
hardware interfaces. In this regard I2C data transfers for
temperature sensor readings, UART for debugging pur-
poses, and GPIO for external triggering were used.

Although the BGScript provides most common pro-
gramming structures and relatively rich APIs it has
several limitations. The main limitations are the limited
amount of available RAM used for variables, the limited
amount of available non-volatile memory for program
storage and most notably the limited amount of pro-
gram stack. The program stack is limited to at most 100
bytes which does not allow deep function nesting nor
moderate size function parameters.

For the evaluation process seven BLE devices were
used from which one was used as root device and six
were used as child nodes. The collected data from each
child node was a temperature stored as a short integer
occupying two bytes.

Total amount of program code was around 60KB which
is approximately 23% of available non-volatile mem-
ory [6]. The program code was the same on all nodes
in the network. To initiate the data collection through

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

93

the network one node was connected to the comput-
er. This node became a root node once it received the
command to start the data collection over the USB/
UART communication port. Detailed mechanism im-
plementation in BGScript language for our measure-
ment board is presented in technical report [14].

In the first experiment set we tested completely con-
nected wireless sensor network where each pair of
nodes are connectable. The nodes were placed in the
same room at a random distance of a few meters from
each other. Using such placement, we conducted two
sets of tests. In the first test set the maximum num-
ber of connected slave nodes were limited to two.
This way we forced the master nodes to connect to at
most two child nodes which resulted in a binary tree
network topology. In the second test set we released
the maximum connection limitation. Since all nodes
were relatively close, they formed a star topology. Both
test sets consist of 2000 temperature data acquisitions
and were collected automatically using python scripts
on a PC computer. There was a pause of few seconds
between each data acquisition to mitigate errors that
might arise from environment disturbances.

In the first test set, when the number of child nodes
was limited to two, the formed networks were binary
tree networks with maximal depth of 3 and various
fan-out shapes. In the test the isomorphic binary trees
were collected together. Representations of the most
frequent isomorphic network trees in the first test set
are shown in Figure 9 whereas the frequency of the
isomorphic network formation is presented in Table 3.
The most common binary tree network was a balanced
tree shown in Figure 9d. The data collecting time in bal-
anced tree network varied from 13 to 16 seconds.

Table 3: Frequency of binary tree network formation

Binary tree network 9a 9b 9c 9d
Occurrences 33 44 413 1205

Figure 9: Binary tree networks

In the second test set performed without connection
limitation, nodes formed a star topology structure
where all child are nodes connected directly to root
node. With this mode of operation, no multi-hop data
transfer was conducted. The data collecting time varied
from 20 to 38 seconds.

During 2000 data acquisition requests a total of 35 dif-
ferent tree network topologies were created.

In both test sets there were some cases where not all
nodes were connected. This can be attributed to the
environment disturbances when some nodes become
inaccessible. Since we implemented only basic er-
ror handling in the multi-hop mechanism such errors
might span over few consecutive tests.

Finally, we tested the mechanism in real-life environ-
ment. In the real-life environment the sensor nodes
do not form a complete graph and if there is a limita-
tion on the number of child nodes some nodes may
become inaccessible. Therefore in the real-life environ-
ment the limitation on the number of the child node
must be omitted. In our test the sensor nodes were
placed throughout the building where they formed a
sensor network shown in Figure 10.

Figure 10: Sensor network connection graph

Figure 11: Tree networks with N1 as the root node

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

94

We conducted two sets of tests. In the first test set
the N1 sensor node was chosen as a root node. In the
Figure 11 two typical tree networks are depicted. The
maximal depth of connection trees was 3. The data col-
lecting time for these connection trees were 25,1 and
23,2 seconds respectively.

In the second test set N7 was chosen as the root node.
In the Figure 12 two examples of tree networks are
shown. The data collecting time for these connection
trees were 27,2 and 25,5 seconds respectively.

Figure 12: Tree network with N7 as the root node

6 Conclusions

As Bluetooth Low Energy technology continues to gain
its use in wireless sensor network the demand for vi-
able data transfer mechanisms over wireless sensor
network also increases.

In this paper a multi-hop communication mechanism
for data acquisition in Bluetooth Low Energy 4.0 ad-hoc
wireless sensor network is presented. The goal was to
extend the range of BLE wireless sensor network by re-
laying data over a series of identical sensor nodes in the
wireless network.

Initially, the mechanism was coded using numerous
nested functions and medium-size function param-
eters that increased program stack consumption. That
led to program stack overflow and subsequently to un-
predictable behaviour of BLE113 module such as de-
vice reboot or variable corruption. The code was later
flattened to eliminate program stack overflows.

We demonstrated that our multi-hop data acquisition
mechanism can be used for a sensor data collection
in tree topology networks. Although the sensor data
collection can take a noticeable amount of time the
mechanism can be nonetheless used for relatively slow
processes such as temperature measurements.

In future we will improve the reliability of the mecha-
nism and include a time-to-live mechanism that will
improve robustness and allow the use of mechanism in
more dynamic environments.

7 Acknowledgments

The authors acknowledge the financial support from
the Slovenian Research Agency (research core funding
No. P2-0098).

8 References

1. Bluetooth Core Specification, Version 4.0, SIG,
June 2010.

2. M. Ilyas and I. Mahqoub, »Handbook of Sensor
Networks: Compact Wireless and Wired Sensing
Systems,« CRC press LLC, 2005.

3. G. Kortuem, F. Kawsar, D. Fitton, and V. Sundra-
moorthy, »Smart objects as building blocks for
the internet of things,« Internet Computing, IEEE,
vol. 14, 44-51, 2010.

4. K. Mikhaylov and J. Tervonen, »Multi-hop Data
Transfer Service for Bluetooth Low Energy«, 2013
13th International Conference on ITS Telecommuni-
cations (ITST), IEEE 2013.

5. B. K. Maharjan, U. Witkowski and R. Zandian, »Tree
network based on Bluetooth 4.0 for wireless sen-
sor network applications,« in Education and Re-
search Conference (EDERC), 2014 6th European
Embedded Design in, pp. 172-176, 2014.

6. BLE113 Bluetooth Smart Module. Available at:
https://www.bluegiga.com/en-US/products/
ble113-bluetooth-smart-module/, visited on
15.5.2016

7. BLE113 Bluetooth Low Energy Breakout, Available
at: http://www.inmojo.com/store/ jeff-rowberg/
item/ble113-bluetooth-low-energy-breakout/,
visited on 15.5.2016

8. LM75B Digital temperature sensor and thermal
watchdog, Available at: http://www.nxp.com/
documents/data_sheet/LM75B.pdf, visited on
4.6.2016

9. K. Mikhaylov, N. Plevritakis, and J. Tervonen, »Per-
formance analysis and comparison of Bluetooth
Low Energy with IEEE 802.15.4 and SimpliciTT,« J.
Sens. Actuator Networks, vol. 2, no. 3, pp. 589-613,
Aug. 2013.

10. Carles Gomez, Joaquim Oller and Josep Paradells,
»Overview and Evaluation of Bluetooth Low En-
ergy: An Emerging Low-Power Wireless Technol-
ogy«, Sensors, 29 August 2012.

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

95

11. Wikipedia – I²C, Available at: http://en.wikipedia.
org/wiki/I2C, visited on 22.8.2017

12. »2.4-GHz Bluetooth Low Energy and Proprietary
System-on-Chip«, Texas Instruments, June 2013

13. BGScript, Available at: http://www.hmangas.
com/ Electronica/Datasheets/Bluetooth%20Mo-
dule/BLE112/Bluetooth+Smart+BGScript+Deve-
loper+Guide.pdf, visited on 18.6.2016

14. Branko Skočir, Gregor Papa, Anton Biasizzo. Multi-
hop communication code, IJS technical report
No. 12380, 2018.

Arrived: 19. 12. 2017
Accepted: 03. 05. 2018

B. Skočir et al; Informacije Midem, Vol. 48, No. 2(2018), 85 – 95

