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Abstract: The structural variation of the brain tissue creates challenges for detection of tumors in MRI images.  In this paper, an 
architecture for spiking convolutional neural networks (SCNNs) is implemented in an embedded system and their potential is 
evaluated in terms of hardware utilization and power consumption in complex applications such as tumor detection.  Accordingly, the 
structure of the proposed SCNN is implemented on a field-programmable gate array (FPGA) using fixed point arithmetic. To evaluate 
the speed, accuracy and flexibility of the proposed SCNN, Izhikevich neuron model is used with the spike-timing-dependent plasticity 
(STDP) learning rule. The suggested neural network is explored for digital implementation possibility and costs. Results of the hardware 
synthesis and digital implementation are presented on an FPGA.
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Digitalna implementacija sunkovnih nevronskih 
mrež za detekcijo tumorjev
Izvleček: Strukturne razlike v možganskem tkivu predstavljajo iziv pri detekciji tumorjev v MRI slikah. Članek opisuje arhitekturo 
implementacije sunkovnih konvolucijskih nevronskih mrež v vgradnih sistemih. Njihov potencial je ocenjen na osnovi strojne 
uporabnosti in porabe pri detekciji tumorjev. Struktura je implementirana v FPGA okolju. Ocena hitrosti, natančnosti in fleksibilnosti je 
opravljena z Izhikevichevim nevronskim modelom.
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1 Introduction

Most clinical reports struggle with the problem of large 
volume of data about patient records in the form of 
medical imaging such as MRI images and CT scans. 
Analyzing and efficient processing of these huge data 
opens up a research avenue motivating researchers to 
explore possible solutions and help physicians to have 
a better diagnosis particularly in case of emergencies 
when no expert is available. Convolutional neural net-
works (CNNs) as a type of deep neural network (DNN) 
present a premium performance in machine learning 
fields including pattern recognition, speech and image 
processing, and natural language processing. 

Simulation and implementation of brain-like networks 
are vital for perceiving the way the brain processes in-
formation. The third generation of neural network mod-
els, called spiking neural networks (SNNs), improved 
the level of biological realism in neural simulations. 
SNNs have provided many opportunities for opening 
up a totally new field in artificial intelligence research. 
Currently, spiking neural networks (SNNs) have gained 
popularity because of their biological plausibility. Prac-
tically, when a neuron model is selected for large SNN, 
there is always an exchange between the biological 
plausibility and computational efficiency [6]. 
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Alan Lloyd Hodgkin and Andrew Huxley suggested the 
first scientific model of spike neurons named Hodgkin-
Huxley (HH) model in 1952 [7]. This model presented the 
procedure of spike generation with a set of four differential 
equations by describing how action potentials take place 
and reproduce. Considering accuracy and computational 
complexity, various biological models such as Izhikevich 
model [8], [9], Integrate and Fire model [8], FitzHugh-Na-
gumo (FHN) model [10], [11], and Hindmarsh-Rose model 
[12] are available. Effective tools for analysis of primary 
procedures in the brain are provided by spiking models 
and solutions are suggested for a wide range of special 
problems in engineering, including fast signal processing 
and pattern and speech recognition [13]. The procedure 
of data processing in the brain can be simulated outside 
the brain through analog or digital circuits if the effective 
model and detailed condition of neuron connections are 
selected. Through targeting various platforms, hardware 
realization of biological neuron models has been ex-
amined. VLSI systems are notable options for the neural 
systems’ direct implementations. Rapid prototyping of 
neural algorithms to realize theories of computational 
neuroscience, network architecture, and learning sys-
tem is made by a VLSI implementation as it enjoys high 
performance and remarkably improved technology [14]. 
Digitally implemented neurobiological networks possess 
shorter development times and are more flexible while 
they consume more silicon area and power compared 
with their analog counterparts.

Nowadays, breakthroughs in circuits and systems such 
as application specific integrated circuits (ASIC), graph-
ical processing units (GPU), and custom hardware ac-
celerators have been proposed as methods for imple-
menting CNNs in practical applications [1-2]. A high 
accuracy digital implementation makes it possible to 
develop networks with high dynamic range and stabil-
ity. Recently, in order to realize neural system models, 
reconfigurable digital platforms have been utilized 
[15]-[22]. Critical challenges of the digital implemen-
tation include Through FPGA it is possible to achieve 
lower power consumption [3, 4, 5].

In this paper, a spiking convolutional network has been 
proposed based on Izhikevich neuron. By using STDP 
as a learning rule, the network was trained to achieve 
the higher accuracy in tumor detection. Furthermore, 
an architecture is presented for Izhikevich neuron. Ac-
cordingly, synthesis and physical implementation have 
been done on the FPGA board.
 

2 The proposed neural network

Considering the biological plausibility and power ef-
ficiency of neuromorphic platforms, developing deep 

SNNs for these platforms is inevitable. These types of 
neural networks are not precise and are not consid-
ered as deep learning methods. On the other side, 
SNNs are efficient networks for simulating the brain 
performances to solve complicated problems in the 
field of intelligent objects. The proposed architecture 
has been presented as the simplest deep structure 
which is fully connected and consists of input, hidden, 
and output layer. Fig. 1 shows the overall structure of 
the deep SNN with its layers. The structure of the sug-
gested deep spiking neural network offers a neuronal 
population with hidden layers which is capable of be-
ing employed in the medical images. The input layer 
learns to perform pre-processing on the input. Infor-
mation is then sent to a series of hidden layers. These 
layers can vary in number. As the information dissemi-
nates through hidden layers, more complex features 
are extracted and learned. The output layer performs 
classifications and detects the tissues of the input im-
ages, usually by Soft-max. The proposed SNN network 
contains Izhikevich neurons. In this structure, the data 
flows in a completely one-way flow from the input to 
the output units. Data processing can be performed 
at several layers of neurons, but there is no feedback 
in this structure. For bridging biologically plausible 
learning algorithms and traditional learning methods 
in neural networks, deep spiking neural networks can 
be an ideal choice. An important restricting parameter 
is lack of training algorithms that have specific uses in 
the capability of spiking neuron models. Most methods 
use rate-based approximations of conventional DNNs. 
Deep SNNs might still be suitable because approximat-
ing the results could be achieved more efficiently and 
faster than traditional systems, especially if the SNN is 
implemented on a neuromorphic hardware platform. 
Furthermore, designing and analyzing the training 
algorithms for SNNs and their employment are more 
difficult because they are discontinuous and asynchro-
nous methods for computing [23]. In the last decades, 
a new learning approach has been emerged in cellular 
learning according to which temporal order has been 
focused instead of frequency. This novel learning rule 
has been known as spike-timing dependent plasticity 
(STDP). STDP process presents the activity-dependent 
development of neural systems by considering  long-
term potentiation  and  long-term depression. Also, it 
has obtained great popularity because of having the 
mixture of computational power and biological plausi-
bility [24]. To train network weights, an STDP algorithm 
has been applied along with a gradient algorithm that 
is a kind of reinforcement training. This network is used 
to achieve a better classification in detecting benign 
and malignant tumors. The output results of the SNN 
are used for categorizing two types of images which 
are recognized at frequencies 11 Hz and 80 Hz for im-
ages with and without tumors, respectively.
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Figure 1: The suggested deep spiking neural network

By using Izhikevich neurons as biologically plausible 
units, the equations of the neuron are as follows [8], [9]:
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where, A+ and A- are the domains of weight changes, τ+ 
and τ- are 10 ms, and W is the synaptic weight. To evalu-
ate the speed, accuracy, and flexibility of the proposed 
spiking neural network, it is implemented on FPGA. 

3 Hardware design

Countless analog and digital brain-inspired electronic 
systems have been put forward as solutions for brisk 
simulations of spiking neural networks. While these ar-
chitectures are proper for realizing the computational 
features of large scale models of the nervous system, 
the challenge of constructing physical devices that are 
able to operate intelligently in the real world and dis-
play cognitive competence is still kept open. Design-
ing and efficient implementation of these structures 
in hardware provide us with the benefit of presenting 
a processing system based on the structure of brains. 
Analog circuits require precision in terms of the fabri-
cation procedure variations and environment temper-

atures. In fact, designing circuits that perform reliably 
under a vast range of extraneous factors is a challeng-
ing endeavor. As a result of this challenge, there is a dis-
sonant condition between simulation results and the 
analog implementation. Furthermore, the reconfigura-
tion of a very large scale integrated (VLSI) implemen-
tation is not achieved easily. Consequently, having a 
rapid prototyping platform for neural models with ho-
mogeneous flexibility in general purpose microproces-
sors seems essential. An FPGA is an ideal technology 
for this purpose. It is true that digital computation con-
sumes more silicon area and power per operation than 
its analog counterpart; however, it affords extra merits.  
Having fascinating features such as low-cost, flexibility, 
reliability, and digital precision makes FPGAs popular 
as a promising choice over analog VLSI approaches for 
designing neuromorphic systems. A digital implemen-
tation of the spiking neural network is considered for 
its fast, high precision, and flexible storage structure. 
On the other hand, usually both analog and digital im-
plementations are used. Analog implementations have 
more restrictions than digital ones. Using a reconfigur-
able and programmable device like FPGA can be an 
ideal option. The smart and small systems used in mod-
ern day-to-day applications and the possibility of their 
connection to the computer, require the implementa-
tion of neural network hardware in small volumes. In 
this structure, a large number of neurons are packed in 
order to implement the network at a huge scale. Based 
on the Euler recursive method, differential equations 
are solved for a neuron model.

Figure 2: General structure of the proposed hardware

Fig. 2 presents an overview of the proposed hardware 
which consists of the training unit (TU), the coefficient 
matrix (CM), the control unit (CU), and the neural popu-
lation. The TU deals with the process of training neu-
rons based on their weights.  The CM contains values 
of weights, parameters of neurons, and other network 
variables. CU produces the necessary control signals 
for the training of the proposed network and also con-
trols the necessary conditions for passing the compu-
tational units. The process of training neuron weights is 
done in the training unit. Neuronal population consists 
of biochemical neurons that are used in all three lay-
ers of the network. This unit is employed for evaluation 
of the proposed CNN on an FPGA for tumor detection 
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as a case study which will be discussed presently. As 
shown in Fig. 3, each Izhikevich neuron can be imple-
mented at six different states by the presented sched-
uling diagram for describing in Verilog HDL as a hard-
ware neuron unit. Also, Fig. 4 demonstrates the general 
structure of Izhikevich neuron by logical units. Accord-
ingly, a hardware architecture is proposed based on 
combinational circuits such as Multiplexers, Multipli-
ers, and arithmetic logic units (ALU). Each part of this 
architecture can perform on the base of the discretized 
the Izhikevich neuron in Euler method. Also, by using 

functional units, the spiking neuron model can be de-
scribed in HDLcode.

Figs. 5 and 6 represent the frequency movement for de-
tecting cancer tumors at frequency 11 Hz and for non-
cancerous tumors at frequency 80 Hz, respectively. Ac-
cordingly, the proposed hardware system is designed 
for recognizing the cancerous and non-cancerous tu-
mors at two different frequencies. Fig. 7 shows how to 
change weights for 8 different neurons.

4 Brain tumors in MR images and the 
proposed convolutional neural network

A spiking convolutional neural networks (SCNN) was 
used for tumor detection as a signal processing appli-
cation in magnetic resonance imaging (MRI). Based on 
Fig. 8, which illustrates the basic architecture, the im-
ages as inputs are transformed to spikes after pre-
processing. The weights trained by a non-spiking CNN 
have been used in the spiking layers. The neuron with 
maximum activity (spike frequency) has been selected 
as the image’s class. One of the most significant CNN-
to-SNN approaches for energy efficient recognition is 
the structure displayed in Fig. 8 in which the weight 
normalization is employed to reduce the performance 
loss. The MRI images are employed for the SCNN by 
using STDP learning. There are 700 experimental MRI 
images as input, 80% of which are used for training 

Figure 4: The general structure of the Izhikevich neuron and the used blocks

Figure 3: Scheduling diagram for the Izhikevich neuron
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Figure 5: Convergence of the neuron of the network output layer to 80 Hz frequency

Figure 6: Convergence of the neuron of the network output layer to 11 Hz frequency
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Figure 7: Changing weights during the training process

Figure 8: Architecture - The CNN is a two-way path in which the rotation on the input piece is performed in two ways.

and 20% are applied for test. All simulations have been 
done in MATLAB.

Fig. 9 provides a better picture of the performance of 
the proposed architecture during shaping features 
which suggests that it is an improvement on the basis 
of the Dice criteria in all areas of the tumor. 

5 Physical Implementation

The proposed SCNN is used for recognizing the tumors 
in MRI images which are categorized based on the 

presence or absence of tumors as shown in Fig. 10. On 
the base of this figure, a physical implementation can 
be proposed for detecting the differences in these two 
categories. Fig. 11 depicts the final results of physically-
implemented network by which the images with and 
without tumors (displayed in Fig. 10) can be recognized 
at 11 Hz and 80 Hz frequencies, respectively. Further-
more, the outcomes of the physical implementation 
are presented as experimental results, verifying and 
validating the accuracy of the proposed method. Also, 
the hardware utilization summary results are present-
ed in Table 1 in which an efficient implementation has 
been obtained. Table 2 compares the synthesis results 
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Table 2: Comparison of the synthesis results of the 
study with the previously published works

Ref. Slice registers Slice LUTs
[3] 33.87% 61.3%

[26] 18.15% 32.82%
This work 2% 16%

6 Conclusions

In this paper, an automated fragmentation of brain 
lesions was presented based on deep convolution 
neural networks. The proposed architecture is a great 
improvement in the voxel-based classification with re-
gard to neighboring information and a number of fea-
tures. In addition to the ability to apply MR images, the 
proposed method can also be applied to enhanced-
contrast scan images. Moreover, by appropriate train-
ing of this learning method, a wide range of medical 
images taken with different devices can also be cov-
ered. A spiking neural network was used to detect be-
nign and malignant tumors. Furthermore, hardware 
design and digital implementation on the FPGA frame-
work improved the speed, accuracy, and flexibility of 

Figure 9: Results of applying the proposed method 
based on the criterion on one of the database images

Figure 10: Two MRI images a) without and b) with tu-
mors “

Figure 11: Results of the physical implementation of 
the proposed SNN: (a) for images with tumor at fre-
quency 11 Hz (b) for images without tumor at frequen-
cy 80 Hz

(a)

(b)

of the present study with those of two other studies re-
ported in the literature, which suggests the lower cost 
of SCNN as compared with CNN on a Virtex-6 FPGA 
ML605 board. The merits of SCNN as an ideal choice for 
hardware implementation purposes is evident.

Table 1: Device utilization summary

Logic Utilization Used Available Utilization
Slice registers 6775 301440 2%

Slice LUTs 24115 150720 16%
Bonded IoBs 9 600 1%

Blocks 1 416 0%
DSP48E1S 20 768 2%

Ayoub A. et al.; Informacije Midem, Vol. 49, No. 4(2019), 193 – 201
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the proposed spiking network, which uses a combi-
nation of the Izhikevich and the STDP learning model. 
The experimental test results confirmed the accuracy 
of the proposed model. To the best of our knowledge, 
while there are some research studies on medical im-
age processing by deep learning, particularly convolu-
tional neural networks, no instance of hardware imple-
mentation of SCNN was found to use medical images 
as a dataset. Also, our dataset is a special one based on 
experimental work and it is not a general dataset. Our 
hardware implementation based on a Virtex-6 FPGA 
ML605 board, presents a hardware module which is 
appropriate for MRI-embedded devices and this re-
duces human mistakes. Also, based on the results of 
the study, the possibility of physical implementation is 
recommended.
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