Effect of Dipole Position and Orientation on Light Extraction for Red OLEDs on Periodically Corrugated Substrate - FEM Simulations Study

Milan Kovačič


One of the main efficiency-limiting factors for organic light-emitting diodes (OLEDs) is poor light extraction, which typically reaches only 20% (in best cases up to 30%) in flat standard devices. Optical modeling and simulations play an important role in improving light extraction and optimizing outcoupling efficiency. Using FEM modeling approach, the effect of dipole positions and orientations for red OLEDs on periodically corrugated substrate is evaluated and used to enhance the outcoupling efficiency. It is shown that with only 3 carefully selected dipole positions, the outcoupling efficiency over the whole area can be predicted with very reasonable accuracy, which greatly reduces the number of simulations required. The presented modelling approach is used for optimization of the sine texture as a substrate corrugation structure. OLEDs with optimized simulated texture show a relative improvement of light outcoupling from the thin film stack to the substrate by more than 25% compared to the flat plane devices.


OLED; outcoupling; finite element method; optical modelling

Full Text:



Y. Chang and Z. Lu, “White Organic Light-Emitting Diodes for Solid-State Lighting,” Journal of Display Technology, vol. 9, no. 6, pp. 459–468, Jun. 2013, doi: 10.1109/JDT.2013.2248698.

S. Reineke, “Complementary LED technologies,” Nature Materials, vol. 14, no. 5, Art. no. 5, May 2015, doi: 10.1038/nmat4277.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys., vol. 85, no. 3, pp. 1245–1293, Jul. 2013, doi: 10.1103/RevModPhys.85.1245.

J. Song, H. Lee, E. G. Jeong, K. C. Choi, and S. Yoo, “Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond,” Advanced Materials, vol. 32, no. 35, p. 1907539, 2020, doi: https://doi.org/10.1002/adma.201907539.

Y. Yin, M. U. Ali, W. Xie, H. Yang, and H. Meng, “Evolution of white organic light-emitting devices: from academic research to lighting and display ap-plications,” Mater. Chem. Front., vol. 3, no. 6, pp. 970–1031, May 2019, doi: 10.1039/C9QM00042A.

L. Xiao, S.-J. Su, Y. Agata, H. Lan, and J. Kido, “Nearly 100% Internal Quantum Efficiency in an Organic Blue-Light Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap,” Advanced Materials, vol. 21, no. 12, pp. 1271–1274, 2009, doi: 10.1002/adma.200802034.

D. Volz, “Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays,” JPE, vol. 6, no. 2, p. 020901, Apr. 2016, doi: 10.1117/1.JPE.6.020901.

Z. Yang et al., “Recent advances in organic ther-mally activated delayed fluorescence materials,” Chem. Soc. Rev., vol. 46, no. 3, pp. 915–1016, Feb. 2017, doi: 10.1039/C6CS00368K.

S. R. Forrest, D. D. C. Bradley, and M. E. Thomp-son, “Measuring the Efficiency of Organic Light-Emitting Devices,” Advanced Materials, vol. 15, no. 13, pp. 1043–1048, 2003, doi: https://doi.org/10.1002/adma.200302151.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mecha-nisms in organic light-emitting diodes,” Appl. Phys. Lett., vol. 97, no. 25, p. 253305, Dec. 2010, doi: 10.1063/1.3527936.

M. C. Gather and S. Reineke, “Recent advances in light outcoupling from white organic light-emitting diodes,” JPE, vol. 5, no. 1, p. 057607, May 2015, doi: 10.1117/1.JPE.5.057607.

A. Salehi, X. Fu, D.-H. Shin, and F. So, “Recent Advances in OLED Optical Design,” Advanced Functional Materials, vol. 29, no. 15, p. 1808803, 2019, doi: 10.1002/adfm.201808803.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employ-ing ordered microlens arrays,” Journal of Applied Physics, vol. 91, no. 5, pp. 3324–3327, Feb. 2002, doi: 10.1063/1.1435422.

H. Greiner, “Light Extraction from Organic Light Emitting Diode Substrates: Simulation and Exper-iment,” Jpn. J. Appl. Phys., vol. 46, no. 7R, p. 4125, Jul. 2007, doi: 10.1143/JJAP.46.4125.

H. Bae, J. S. Kim, and C. Hong, “Simulation for light extraction efficiency of OLEDs with spheroi-dal microlenses in hexagonal array,” Optics Com-munications, vol. 415, pp. 168–176, May 2018, doi: 10.1016/j.optcom.2018.01.044.

M. Kovačič et al., “Combined optical model for micro-structured organic light emitting diodes,” Informacije MIDEM, vol. 46, no. 4, Art. no. 4, Jan. 2017.

M. Kovačič et al., “Coupled Optical Modeling for Optimization of Organic Light-Emitting Diodes with External Outcoupling Structures,” ACS Pho-tonics, vol. 5, no. 2, pp. 422–430, Feb. 2018, doi: 10.1021/acsphotonics.7b00874.

A. Gasonoo et al., “Outcoupling efficiency en-hancement of a bottom-emitting OLED with a vis-ible parylene film,” Opt. Express, OE, vol. 28, no. 18, pp. 26724–26732, Aug. 2020, doi: 10.1364/OE.397789.

J.-H. Yen, Y.-J. Wang, C.-A. Hsieh, Y.-C. Chen, and L.-Y. Chen, “Enhanced light extraction from organ-ic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films,” J. Mater. Chem. C, vol. 8, no. 12, pp. 4102–4111, Mar. 2020, doi: 10.1039/C9TC06449D.

E. Wrzesniewski et al., “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Ar-rays,” Small, vol. 8, no. 17, pp. 2647–2651, 2012, doi: https://doi.org/10.1002/smll.201102662.

Y. Li et al., “Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes,” Nature Communications, vol. 10, no. 1, p. 2972, Jul. 2019, doi: 10.1038/s41467-019-11032-z.

H. Liang et al., “Corrugated organic light-emitting diodes to effectively extract internal modes,” Opt. Express, OE, vol. 27, no. 8, pp. A372–A384, Apr. 2019, doi: 10.1364/OE.27.00A372.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nature Photonics, vol. 2, no. 8, Art. no. 8, Aug. 2008, doi: 10.1038/nphoton.2008.132.

Y. Qu, C. Coburn, D. Fan, and S. R. Forrest, “Elimi-nation of Plasmon Losses and Enhanced Light Ex-traction of Top-Emitting Organic Light-Emitting Devices Using a Reflective Subelectrode Grid,” ACS Photonics, vol. 4, no. 2, pp. 363–368, Feb. 2017, doi: 10.1021/acsphotonics.6b00847.

D. Riedel, T. Wehlus, T. C. G. Reusch, and C. J. Brabec, “Polymer-based scattering layers for inter-nal light extraction from organic light emitting di-odes,” Organic Electronics, vol. 32, pp. 27–33, May 2016, doi: 10.1016/j.orgel.2016.02.004.

J.-M. Jin, The Finite Element Method in Electromag-netics. John Wiley & Sons, 2015.

M. Furno, R. Meerheim, M. Thomschke, S. Hof-mann, B. Lüssem, and K. Leo, “Outcoupling effi-ciency in small-molecule OLEDs: from theory to experiment,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIV, Feb. 2010, vol. 7617, p. 761716, doi: 10.1117/12.840043.

K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A, JOSAA, vol. 15, no. 4, pp. 962–971, Apr. 1998, doi: 10.1364/JOSAA.15.000962.

“The COMSOL® Software Product Suite,” COMSOL Multiphysics®. https://www.comsol.com/products (accessed Jul. 17, 2019).

“Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software.” https://www.comsol.com/paper/simulating-plasmon-effects-in-nano-structured-oled-cathodes-using-comsol-multiph-27012 (accessed Nov. 11, 2020).

L. Zschiedrich, H. J. Greiner, S. Burger, and F. Schmidt, “Numerical analysis of nanostructures for enhanced light extraction from OLEDs,” in Light-Emitting Diodes: Materials, Devices, and Applica-tions for Solid State Lighting XVII, Mar. 2013, vol. 8641, p. 86410B, doi: 10.1117/12.2001132.

L. Zschiedrich, T. Blome, and H. J. Greiner, “Simu-lation of advanced OLED light extraction struc-tures with novel FEM methods,” in Organic Pho-tonics VI, May 2014, vol. 9137, p. 91370O, doi: 10.1117/12.2054146.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys., vol. 67, no. 5, p. 717, Apr. 2004, doi: 10.1088/0034-4885/67/5/R03.

S. Zhang, E. R. Martins, A. G. Diyaf, J. I. B. Wilson, G. A. Turnbull, and I. D. W. Samuel, “Calculation of the emission power distribution of microstruc-tured OLEDs using the reciprocity theorem,” Syn-thetic Metals, vol. 205, pp. 127–133, Jul. 2015, doi: 10.1016/j.synthmet.2015.03.035.

M. Sever et al., “Combined model of non-conformal layer growth for accurate optical simu-lation of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 119, pp. 59–66, Dec. 2013, doi: 10.1016/j.solmat.2013.05.016.

DOI: https://doi.org/10.33180/InfMIDEM2021.105


  • There are currently no refbacks.

Copyright (c) 2021 Milan Kovačič

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.