Nanotechnology and Nanoscience - From Past Breakthroughs to Future Prospects

Jernej Štremfelj, Franc Smole


Nanoscience and nanotechnology represent an increasingly important part of our lives. Their achievements are already proving to be useful in everyday life, as well as in the fields of medicine, energetics, environmental protection, transport and electronics along with information technology. In this paper, the development of nanotechnology is presented through its major breakthroughs. A special section is reserved for the development in the field of microelectronics, which is facing numerous challenges, due to downsizing of devices to the nanometre level. Current situation in microelectronics industry and predictions for the next few years are presented. Furthermore, the use of nanotechnology and future prospects for all abovementioned fields are described. The last part of this paper is devoted to the field of electronics and information technology, where some potential nanotechnological solutions for the challenges of microelectronics are implied. The use of carbon nanotubes in logic circuits and memory applications is presented. The basic principle of single-electron transistor is also described. Basic concepts of the use of spintronics in magnetoresistive random access memory (MRAM) structures are explained. Memristor is also presented as an important future prospect. However, the review paper focuses only on positive effects of the use of nanotechnology, and thus does not discuss its possible negative impact on public health and environment.


nanotechnology; nanoscience; microelectronics; carbon nanotubes; quantum dots

Full Text:



F. Smole, M. Topič, and J. Krč, Nanoelektronika, 1. Ljubljana: Založba FE in FRI, 2014.

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine,” Molecules, vol. 25, no. 1. MDPI AG, p. 112, 2019, doi: 10.3390/molecules25010112.

“What’s So Special about the Nanoscale? |” (accessed Nov. 29, 2020).

“Nano Gold | 4cast web-tool | PHORNANO Holding GmbH.” (accessed Nov. 29, 2020).

G. Binnig and H. Rohrer, “Scanning tunneling microscopy from birth to adolescence,” Rev. Mod. Phys., vol. 59, no. 3, pp. 615–625, 1987, doi: 10.1103/RevModPhys.59.615.

“The Nobel Prize in Physics 1986.” (accessed Nov. 29, 2020).

“The Nobel Prize in Physics 1956 -” (accessed Nov. 29, 2020).

“Nokia Bell-Labs Timeline.” (accessed Dec. 22, 2020).

M. Riordan, “The lost history of the transistor,” IEEE Spectr., vol. 41, no. 5, pp. 44–49, 2003, doi: 10.1109/MSPEC.2004.1296014.

J. S. C. Kilby, “Turning potential into realities: The invention of the integrated circuit (Nobel lecture),” ChemPhysChem, vol. 2, no. 8–9. Wiley-VCH Verlag, pp. 482–489, Aug. 17, 2001, doi: 10.1002/1439-7641(20010917)2:8/9<482::aid-cphc482>;2-y.

R. K. Basset, To the Digital Age: Research Labs, Start-up Companies and the Rise of MOS Technology (Johns Hopkins Studies in the History of Technology). Baltimore: Johns Hopkins University Press, 2002.

S. L. Moskowitz, Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons, 2016.

G. E. Moore, “Cramming more components onto integrated circuits. In: Electronics,” Electronics, 1965, [Online]. Available:

G. E. Moore, “Progress in digital integrated electronics,” Electron devices meeting. 1975, [Online]. Available:

B. Knehr, J. Lewis, and C. Morse, “Developmental History of main-line Intel CPUs,” 2002. [Online]. Available:

“International Technology Roadmap for Semiconductors - ITRS 2.0 Home Page.” (accessed Nov. 29, 2020).

“The International Roadmap for Devices, International Roadmap for Devices and Systems; 2017 Edition; More Moore,” 2018. Accessed: Nov. 29, 2020. [Online]. Available:

“The National Technology Roadmap for Semiconductors,” 1994. Accessed: Nov. 29, 2020. [Online]. Available:

H. S. P. Wong et al., “A Density Metric for Semiconductor Technology [Point of View],” Proceedings of the IEEE, vol. 108, no. 4. Institute of Electrical and Electronics Engineers Inc., pp. 478–482, Apr. 01, 2020, doi: 10.1109/JPROC.2020.2981715.

“Process Technology History - Intel - WikiChip.” (accessed Nov. 29, 2020).

P. Ye, T. Ernst, and M. V. Khare, “The last silicon transistor: Nanosheet devices could be the final evolutionary step for Moore’s Law,” IEEE Spectr., vol. 56, no. 8, pp. 30–35, Aug. 2019, doi: 10.1109/MSPEC.2019.8784120.

“File: Moore’s Law Transistor Count 1971-2018.png - Wikimedia Commons.” (accessed Dec. 27, 2020).

“Samsung Electronics on Track for 10nm FinFET Process Technology Production Ramp-up – Samsung Global Newsroom.” (accessed Dec. 22, 2020).

Y. Ding et al., “A Device Design for 5 nm Logic FinFET Technology,” J. Microelectron. Manuf., vol. 3, no. 1, pp. 1–8, 2019, doi: 10.33079/jomm.20030105.

A. Artashyan, “Samsung Electronics Has Already Begun Mass Production Of 5nm Chips.” (accessed Nov. 29, 2020).

I. Cutress, “Samsung Announces 3nm GAA MBCFET PDK, Version 0.1.” (accessed Nov. 29, 2020).

“Samsung Electronics’ Leadership in Advanced Foundry Technology Showcased with Latest Silicon Innovations and Ecosystem Platform – Samsung Global Newsroom.” (accessed Dec. 22, 2020).

“Q2 2019 Taiwan Semiconductor Manufacturing Co Ltd EarningsCall (Edited transcript).” Thomson Reuters, Jul. , Accessed: Nov. 29, 2020. [Online]. Available: 2Q19 transcript.pdf.

N. Mojarad, J. Gobrecht, and Y. Ekinci, “Beyond EUV lithography: A comparative study of efficient photoresists’ performance,” Sci. Rep., vol. 5, no. 1, pp. 1–7, Mar. 2015, doi: 10.1038/srep09235.

A. A. Long, The Cambridge Companion to Early Greek Philosophy (Cambridge Companions to Philosophy). Cambridge University Press, 1999.

B. Rogers, J. Adams, and S. Pennathur, Nanotechnology: Understanding Small Systems, Third Edition, 3rd ed. CRC Press, 2015.

N. Taniguchi, “On the Basic concept of Nanotechnology,” Proceeding ICPE, 1974.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930–933, Mar. 1986, doi: 10.1103/PhysRevLett.56.930.

D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope,” Nature, vol. 344, no. 6266, pp. 524–526, Apr. 1990, doi: 10.1038/344524a0.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, 1985, doi: 10.1038/318162a0.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 1991, doi: 10.1038/354056a0.

“Carbon Nanotube stock illustration. Illustration of colour - 43175001.” (accessed Dec. 22, 2020).

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun., vol. 56, no. 11, pp. 921–924, 1985, doi: 10.1016/S0038-1098(85)80025-9.

S. Kailasa, K.-H. Cheng, and H.-F. Wu, “Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis,” Materials (Basel)., vol. 6, no. 12, pp. 5763–5795, Dec. 2013, doi: 10.3390/ma6125763.

C. Livache et al., “A colloidal quantum dot infrared photodetector and its use for intraband detection,” Nat. Commun., 2019, doi: 10.1038/s41467-019-10170-8.

Z. Liu et al., “Micro-light-emitting diodes with quantum dots in display technology,” Light: Science and Applications. 2020, doi: 10.1038/s41377-020-0268-1.

A. J. Nozik, “Quantum dot solar cells,” in Physica E: Low-Dimensional Systems and Nanostructures, Apr. 2002, vol. 14, no. 1–2, pp. 115–120, doi: 10.1016/S1386-9477(02)00374-0.

C. T. Kresge, J. C. Vartuli, W. J. Roth, and M. E. Leonowicz, “The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves,” in Studies in Surface Science and Catalysis, Jan. 2004, vol. 148, pp. 53–72, doi: 10.1016/s0167-2991(04)80193-9.

“Nanotechnology Timeline |” (accessed Nov. 29, 2020).

H. Lee and W. Ho, “Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 61, no. 24, pp. R16347–R16350, Jun. 2000, doi: 10.1103/PhysRevB.61.R16347.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “‘Dip-pen’ nanolithography,” Science (80-. )., vol. 283, no. 5402, pp. 661–663, Jan. 1999, doi: 10.1126/science.283.5402.661.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem., vol. 75, no. 10, pp. 2377–2381, May 2003, doi: 10.1021/ac0262210.

R. D. Barish, P. W. K. Rothemund, and E. Winfree, “Two computational primitives for algorithmic self-assembly: Copying and counting,” Nano Lett., vol. 5, no. 12, pp. 2586–2592, Dec. 2005, doi: 10.1021/nl052038l.

N. C. Seeman, “Nanomaterials Based on DNA,” 2010, doi: 10.1146/annurev-biochem-060308-102244.

A. W. Knoll et al., “Probe-based 3-D nanolithography using self-amplified depolymerization polymers,” Adv. Mater., vol. 22, no. 31, pp. 3361–3365, 2010, doi: 10.1002/adma.200904386.

“IBM Creates Nano-sized 3D Map of Earth in Less Than 3 Minutes!” (accessed Nov. 29, 2020).

“2014 National Nanotechnology Initiative Strategic Plan,” 2014. Accessed: Nov. 29, 2020. [Online]. Available:

“Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011, Environmental, Health and Safety Research Strategy,” 2011. Accessed: Nov. 29, 2020. [Online]. Available:

“Nanoscience and nanotechnologies: opportunities and uncertainties,” 2004. Accessed: Nov. 29, 2020. [Online]. Available:

“Towards a European Strategy for Nanotechnology,” 2004. Accessed: Nov. 29, 2020. [Online]. Available:

“Benefits and Applications |” (accessed Nov. 29, 2020).

L. Van Langenhove, C. Hertleer, P. Westbroek, and J. Priniotakis, “Textile sensors for healthcare,” in Smart textiles for medicine and healthcare: Materials, systems and applications, Elsevier Ltd, 2007, pp. 106–122.

A. Hatamie et al., “Review—Textile Based Chemical and Physical Sensors for Healthcare Monitoring,” J. Electrochem. Soc., vol. 167, no. 3, p. 037546, Jan. 2020, doi: 10.1149/1945-7111/ab6827.

P. J. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, and D. Y. C. Shih, “Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics,” J. Food Drug Anal., vol. 23, no. 3, pp. 587–594, Sep. 2015, doi: 10.1016/j.jfda.2015.02.009.

C. S. Thaxton, D. G. Georganopoulou, and C. A. Mirkin, “Gold nanoparticle probes for the detection of nucleic acid targets,” Clinica Chimica Acta, vol. 363, no. 1–2. Elsevier, pp. 120–126, Jan. 01, 2006, doi: 10.1016/j.cccn.2005.05.042.

J. B. Vines, J. H. Yoon, N. E. Ryu, D. J. Lim, and H. Park, “Gold nanoparticles for photothermal cancer therapy,” Frontiers in Chemistry, vol. 7, no. APR. Frontiers Media S.A., p. 167, 2019, doi: 10.3389/fchem.2019.00167.

A. Meola, J. Rao, N. Chaudhary, M. Sharma, and S. D. Chang, “Gold nanoparticles for brain tumor imaging: A systematic review,” Frontiers in Neurology, vol. 9, no. MAY. Frontiers Media S.A., May 14, 2018, doi: 10.3389/fneur.2018.00328.

S. Bagheri et al., “Using gold nanoparticles in diagnosis and treatment of melanoma cancer,” Artificial Cells, Nanomedicine and Biotechnology, vol. 46, no. sup1. Taylor and Francis Ltd., pp. 462–471, Oct. 31, 2018, doi: 10.1080/21691401.2018.1430585.

J. Chen, X. Zhang, R. Millican, J. E. Creutzmann, S. Martin, and H. W. Jun, “High density lipoprotein mimicking nanoparticles for atherosclerosis,” Nano Convergence, vol. 7, no. 1. Korea Nano Technology Research Society, Dec. 01, 2020, doi: 10.1186/s40580-019-0214-1.

F. U. Din et al., “Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors,” International Journal of Nanomedicine, vol. 12. Dove Medical Press Ltd., pp. 7291–7309, Oct. 05, 2017, doi: 10.2147/IJN.S146315.

M. Griffin, D. Kalaskar, A. Seifalian, and P. Butler, “An update on the Application of Nanotechnology in Bone Tissue Engineering,” Open Orthop. J., vol. 10, no. 1, pp. 836–848, Jan. 2017, doi: 10.2174/1874325001610010836.

R. Medhi, P. Srinoi, N. Ngo, H. V. Tran, and T. R. Lee, “Nanoparticle-Based Strategies to Combat COVID-19,” ACS Applied Nano Materials, vol. 3, no. 9. American Chemical Society, pp. 8557–8580, Sep. 25, 2020, doi: 10.1021/acsanm.0c01978.

M. Hellfritzsch and R. Scherließ, “Mucosal vaccination via the respiratory tract,” Pharmaceutics, vol. 11, no. 8. MDPI AG, Aug. 01, 2019, doi: 10.3390/pharmaceutics11080375.

U. J. Etim, P. Bai, and Z. Yan, “Nanotechnology Applications in Petroleum Refining,” 2018, pp. 37–65.

H. Soukht Saraee, S. Jafarmadar, H. Taghavifar, and S. J. Ashrafi, “Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles,” Int. J. Environ. Sci. Technol., vol. 12, no. 7, pp. 2245–2252, Jul. 2015, doi: 10.1007/s13762-015-0759-4.

F. Su, C. Lu, W. Cnen, H. Bai, and J. F. Hwang, “Capture of CO2 from flue gas via multiwalled carbon nanotubes,” Sci. Total Environ., vol. 407, no. 8, pp. 3017–3023, Apr. 2009, doi: 10.1016/j.scitotenv.2009.01.007.

A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, “Electrical properties of carbon nanotube based fibers and their future use in electrical wiring,” Adv. Funct. Mater., vol. 24, no. 24, pp. 3661–3682, Jun. 2014, doi: 10.1002/adfm.201303716.

S. Boncel, A. Kolanowska, A. W. Kuziel, and I. Krzyżewska, “Carbon Nanotube Wind Turbine Blades: How Far Are We Today from Laboratory Tests to Industrial Implementation?,” ACS Appl. Nano Mater., vol. 1, no. 12, pp. 6542–6555, Dec. 2018, doi: 10.1021/acsanm.8b01824.

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Advanced Energy Materials, vol. 10, no. 26. Wiley-VCH Verlag, Jul. 01, 2020, doi: 10.1002/aenm.201904102.

M. I. Nugraha et al., “Low‐Temperature‐Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics,” Adv. Energy Mater., vol. 9, no. 13, p. 1803049, Apr. 2019, doi: 10.1002/aenm.201803049.

I. S. Yunus, Harwin, A. Kurniawan, D. Adityawarman, and A. Indarto, “Nanotechnologies in water and air pollution treatment,” Environ. Technol. Rev., vol. 1, no. 1, pp. 136–148, Nov. 2012, doi: 10.1080/21622515.2012.733966.

M. Heiranian, A. B. Farimani, and N. R. Aluru, “Water desalination with a single-layer MoS 2 nanopore,” Nat. Commun., 2015, doi: 10.1038/ncomms9616.

B. I. Kharisov, H. V. R. Dias, and O. V. Kharissova, “Nanotechnology-based remediation of petroleum impurities from water,” J. Pet. Sci. Eng., vol. 122, pp. 705–718, Aug. 2014, doi: 10.1016/j.petrol.2014.09.013.

M. Jošt et al., “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy Environ. Sci, vol. 11, p. 3511, 2018, doi: 10.1039/c8ee02469c.

E. Akbari et al., “Analytical calculation of sensing parameters on carbon nanotube based gas sensors,” Sensors (Switzerland), vol. 14, no. 3, pp. 5502–5515, Mar. 2014, doi: 10.3390/s140305502.

M. Shafique and X. Luo, “Nanotechnology in transportation vehicles: An overview of its applications, environmental, health and safety concerns,” Materials, vol. 12, no. 15. MDPI AG, Aug. 01, 2019, doi: 10.3390/ma12152493.

S. E. O and D. B. Smith, “Potential Impact of Carbon Nanotube Reinforced Polymer Composite on Commercial Heavy Aircraft,” 2004. Accessed: Nov. 29, 2020. [Online]. Available:

L. Mardare and L. Benea, “Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment,” in IOP Conference Series: Materials Science and Engineering, Jun. 2017, vol. 209, no. 1, p. 47, doi: 10.1088/1757-899X/209/1/012056.

I. Ahmed, N. Ahmad, I. Mehmood, I. U. Haq, M. Hassan, and M. U. A. Khan, “Applications of Nanotechnology in Transportation Engineering,” 2016, pp. 180–207.

W. Zhu, P. J. M. Bartos, and A. Porro, “Application of nanotechnology in construction,” Mater. Struct., vol. 37, no. 9, pp. 649–658, Nov. 2004, doi: 10.1007/bf02483294.

A. Tabaković and E. Schlangen, “Self-healing technology for asphalt pavements,” in Advances in Polymer Science, vol. 273, Springer New York LLC, 2016, pp. 285–306.

M. Barriera, S. Pouget, B. Lebental, and J. Van Rompu, “In situ pavement monitoring: A review,” Infrastructures, vol. 5, no. 2. MDPI Multidisciplinary Digital Publishing Institute, 2020, doi: 10.3390/infrastructures5020018.

“Infineon Unveils World`s Smallest Nanotube Transistor - Infineon Technologies.” (accessed Dec. 22, 2020).

G. Hills et al., “Modern microprocessor built from complementary carbon nanotube transistors,” Nature, 2019, doi: 10.1038/s41586-019-1493-8.

M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501, no. 7468, pp. 526–530, Sep. 2013, doi: 10.1038/nature12502.

E. Gibney, “Biggest carbon-nanotube chip yet says ‘Hello, World!,’” Nature, 2019, doi: 10.1038/d41586-019-02576-7.

B. Gervasi, “Will Carbon Nanotube Memory Replace DRAM?,” 2019, doi: 10.1109/MM.2019.2897560.

“Image Gallery -” (accessed Dec. 22, 2020).

M. Devoret and C. Glattli, “Single-electron transistors,” Phys. World, vol. 11, no. 9, pp. 29–33, Sep. 1998, doi: 10.1088/2058-7058/11/9/26.

“File:Set schematic.svg - Wikimedia Commons.” (accessed Nov. 29, 2020).

O. Kumar and M. Kaur, “Single Electron Transistor: Applications & Problems,” Int. J. VLSI Des. Commun. Syst., vol. 1, no. 4, pp. 24–29, Dec. 2010, doi: 10.5121/vlsic.2010.1403.

S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, “Spintronics based random access memory: a review,” Materials Today, vol. 20, no. 9. Elsevier B.V., pp. 530–548, Nov. 01, 2017, doi: 10.1016/j.mattod.2017.07.007.

“File:Spin-valve GMR.svg - Wikimedia Commons.” (accessed Nov. 29, 2020).

J. G. Webster, S. Z. Peng, Y. Zhang, M. X. Wang, Y. G. Zhang, and W. Zhao, “Magnetic Tunnel Junctions for Spintronics: Principles and Applications,” in Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc., 2014, pp. 1–16.

M. Wang, Y. Zhang, X. Zhao, and W. Zhao, “Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges,” Micromachines, vol. 6, no. 8, pp. 1023–1045, 2015, doi: 10.3390/mi6081023.

V. Sverdlov, J. Weinbub, and S. Selberherr, “Spintronics as a Non-Volatile Complement to Modern Microelectronics,” 2017.

L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan, “Research progress on solutions to the sneak path issue in memristor crossbar arrays,” Nanoscale Advances, vol. 2, no. 5. Royal Society of Chemistry, pp. 1811–1827, May 01, 2020, doi: 10.1039/d0na00100g.

S. Pi et al., “Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension,” Nature Nanotechnology. 2019, doi: 10.1038/s41565-018-0302-0.

S. Stathopoulos et al., “Multibit memory operation of metal-oxide Bi-layer memristors,” Sci. Rep., 2017, doi: 10.1038/s41598-017-17785-1.

T. F. Schranghamer, A. Oberoi, and S. Das, “Graphene memristive synapses for high precision neuromorphic computing,” Nat. Commun., 2020, doi: 10.1038/s41467-020-19203-z.



  • There are currently no refbacks.

Copyright (c) 2021 Jernej Štremfelj, Franc Smole

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.