Electrocaloric and pyroelectric properties of 0.6Ba0.85Ca0.15Zr0.10Ti0.90O3 –0.4BaTi0.89Sn0.11O3 ceramics

Soukaina Merselmiz

Abstract


Ferroelectric materials are gaining considerable attention for energy storage, electrocaloric and pyroelectric energy harvesting applications. In particular, Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) and BaTi0.89Sn0.11O3 (BTSn) ceramics are among the best-studied lead-free BaTiO3-based ferroelectrics with high piezoelectric and electrocaloric properties. In this work, we prepared a 0.6BCZT–0.4BTSn solid solution. The structural, energy storage, electrocaloric, and pyroelectric properties are investigated. An energy density of 61.4 mJ cm-3 with a high energy efficiency of 82.4 % at 90 °C is achieved. The electrocaloric temperature change, which is determined indirectly via the Maxwell relation, is 0.5 K at 86 °C and 25 kV cm-1. It is stable over a wide temperature range of around 65 °C and has a coefficient of performance of 15. Moreover, a pyroelectric energy density of 124.1 mJ cm-3 is achieved. The results of this study show that the 0.6BCZT–0.4BTSn  ceramics is a multifunctional material with energy storage, electrocaloric and pyroelectric properties.

Keywords


Lead-free; ceramic; BCZT; energy storage; electrocaloric; pyroelectric; energy harvesting

Full Text:

PDF

References


B. Malič, M. Otoničar, K. Radan, and J. Koruza, “Lead-Free Piezoelectric Ceramics,” in Encyclopedia of Materials: Technical Ceramics and Glasses, (Ed. :M. Pomeroy), Ed. Amsterdam: Elsevier BV, 2021, pp. V3-358-V3-368, https://doi.org/10.1016/B978-0-12-803581-8.12131-9.

S. Zhang, B. Malič, J. F. Li, and J. Rödel, “Lead-free ferroelectric materials: Prospective applications,” J. Mater. Res., vol. 36, no. 5, pp. 985–995, Mar. 2021, https://doi.org/10.1557/s43578-021-00180-y.

J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the development of lead-free piezoceramics,” J. Am. Ceram. Soc., vol. 92, no. 6, pp. 1153–1177, Jun. 2009, https://doi.org/10.1111/j.1551-2916.2009.03061.x.

J. Rödel and J. F. Li, “Lead-free piezoceramics: Status and perspectives,” MRS Bull., vol. 43, no. 8, pp. 576–580, Aug. 2018, https://doi.org/10.1557/mrs.2018.181.

Z. Kutnjak, B. Rožič, and R. Pirc, “Electrocaloric Effect: Theory, Measurements, and Applications,” in Wiley Encyclopedia of Electrical and Electronics Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015, pp. 1–19, https://doi.org/10.1002/047134608x.w8244.

X. Moya and N. D. Mathur, “Caloric materials for cooling and heating,” Science (80-. )., vol. 370, no. 6518, pp. 797–803, Nov. 2020, https://doi.org/10.1126/science.abb0973.

A. Torelló and E. Defay, “Electrocaloric Coolers: A Review,” Adv. Electron. Mater., vol. 8, no. 6, Jun. 2022, https://doi.org/10.1002/aelm.202101031.

Z. Kutnjak and B. Rožič, “Indirect and Direct Measurements of the Electrocaloric Effect,” in Engineering Materials, (Ed.:Tatiana Correia and Qi Zhang), Ed. Berlin, Heidelberg: Springer, 2014, pp. 147–182, https://doi.org/10.1007/978-3-642-40264-7_7.

A. L. Kholkin, O. V. Pakhomov, A. A. Semenov, and A. Tselev, “The Electrocaloric Effect: Materials and Applications,” Electrocaloric Eff. Mater. Appl., pp. 1–433, 2023, https://doi.org/10.1016/C2019-0-02843-9.

X. Chen, V. V. Shvartsman, D. C. Lupascu, and Q. M. Zhang, “Electrocaloric cooling - From materials to devices,” J. Appl. Phys., vol. 132, no. 24, Dec. 2022, https://doi.org/10.1063/5.0132533.

Z. Fan, X. Liu, and X. Tan, “Large electrocaloric responses in [Bi1/2(Na,K)1/2]TiO3-based ceramics with giant electro-strains,” J. Am. Ceram. Soc., vol. 100, no. 5, pp. 2088–2097, May 2017, https://doi.org/10.1111/jace.14777.

S. Pandya et al., “New approach to waste-heat energy harvesting: pyroelectric energy conversion,” NPG Asia Mater., vol. 11, no. 1, p. 26, Dec. 2019, https://doi.org/10.1038/s41427-019-0125-y.

F. Y. Lee, A. Navid, and L. Pilon, “Pyroelectric waste heat energy harvesting using heat conduction,” Appl. Therm. Eng., vol. 37, pp. 30–37, May 2012, https://doi.org/10.1016/j.applthermaleng.2011.12.034.

P. Lheritier et al., “Large harvested energy with non-linear pyroelectric modules,” Nature, vol. 609, no. 7928, pp. 718–721, Sep. 2022, https://doi.org/10.1038/s41586-022-05069-2.

D. Zhang, H. Wu, C. R. Bowen, and Y. Yang, “Recent Advances in Pyroelectric Materials and Applications,” Small, vol. 17, no. 51, Dec. 2021, https://doi.org/10.1002/smll.202103960.

S. P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, and R. W. Whatmore, “Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion,” MRS Bull., vol. 39, no. 12, pp. 1099–1111, Dec. 2014, https://doi.org/10.1557/mrs.2014.256.

C. R. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, and R. Vaish, “Pyroelectric materials and devices for energy harvesting applications,” Energy Environ. Sci., vol. 7, no. 12, pp. 3836–3856, 2014, https://doi.org/10.1039/c4ee01759e.

S. Patel et al., “Thermomechanical Energy Conversion Potential of Lead-Free 0.50Ba(Zr0.2Ti0.8)O3–0.50(Ba0.7Ca0.3)TiO3 Bulk Ceramics,” Energy Technol., vol. 6, no. 5, pp. 872–882, May 2018, https://doi.org/10.1002/ente.201700416.

D. Ando and K. ichi Kakimoto, “Pyroelectric energy harvesting using low–TC (1–x)(Ba0.7Ca0.3)TiO3–xBa(Zr0.2Ti0.8)O3 bulk ceramics,” J. Am. Ceram. Soc., vol. 101, no. 11, pp. 5061–5070, Nov. 2018, https://doi.org/10.1111/jace.15746.

H. Kacem et al., “Relaxor characteristics and pyroelectric energy harvesting performance of BaTi0.91Sn0.09O3 ceramic,” J. Alloys Compd., vol. 872, p. 159699, 2021, https://doi.org/10.1016/j.jallcom.2021.159699.

F. Yan, J. Qian, S. Wang, and J. Zhai, “Progress and outlook on lead-free ceramics for energy storage applications,” Nano Energy, vol. 123, p. 109394, May 2024, https://doi.org/10.1016/j.nanoen.2024.109394.

L. Yang et al., “Perovskite lead-free dielectrics for energy storage applications,” Prog. Mater. Sci., vol. 102, pp. 72–108, May 2019, https://doi.org/10.1016/j.pmatsci.2018.12.005.

H. Zhang et al., “A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors,” J. Mater. Chem. C, vol. 8, no. 47, pp. 16648–16667, 2020, https://doi.org/10.1039/d0tc04381h.

A. Jain, Y. G. Wang, and L. N. Shi, “Recent developments in BaTiO3 based lead-free materials for energy storage applications,” J. Alloys Compd., vol. 928, 2022, https://doi.org/10.1016/j.jallcom.2022.167066.

V. Veerapandiyan, F. Benes, T. Gindel, and M. Deluca, “Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: A review,” Materials (Basel)., vol. 13, no. 24, pp. 1–47, Dec. 2020, https://doi.org/10.3390/ma13245742.

V. Veerapandiyan et al., “Origin of Relaxor Behavior in Barium-Titanate-Based Lead-Free Perovskites,” Adv. Electron. Mater., vol. 8, no. 2, Feb. 2022, https://doi.org/10.1002/aelm.202100812.

Y. Yao et al., “Large piezoelectricity and dielectric permittivity in BaTiO 3-xBaSnO 3 system: The role of phase coexisting,” Epl, vol. 98, no. 2, 2012, https://doi.org/10.1209/0295-5075/98/27008.

T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 111–124, Sep. 2007, https://doi.org/10.1007/s10832-007-9047-0.

Y. Zhang, L. Chen, H. Liu, S. Deng, H. Qi, and J. Chen, “High-performance ferroelectric based materials via high-entropy strategy: Design, properties, and mechanism,” InfoMat, vol. 5, no. 12, Dec. 2023, https://doi.org/10.1002/inf2.12488.

C. Zhao, B. Wu, and J. Wu, “Composition-driven broad phase boundary for optimizing properties and stability in lead-free barium titanate ceramics,” J. Am. Ceram. Soc., vol. 102, no. 6, pp. 3477–3487, 2019, https://doi.org/10.1111/jace.16194.

M. Acosta et al., “BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives,” Appl. Phys. Rev., vol. 4, no. 4, Dec. 2017, https://doi.org/10.1063/1.4990046.

G. Canu et al., “Structure-property correlations and origin of relaxor behaviour in BaCexTi1-xO3,” Acta Mater., vol. 152, pp. 258–268, Jun. 2018, https://doi.org/10.1016/j.actamat.2018.04.038.

S. W. Konsago, A. Debevec, J. Cilenšek, B. Kmet, and B. Malič, “Linear Thermal Expansion of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Bulk Ceramic,” Inf. MIDEM, vol. 53, no. 4, pp. 233–238, Feb. 2023, https://doi.org/10.33180/InfMIDEM2023.403.

S. Merselmiz et al., “Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic,” RSC Adv., vol. 11, no. 16, pp. 9459–9468, 2021, https://doi.org/10.1039/D0RA09707A.

S. Merselmiz et al., “High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic,” Ceram. Int., vol. 46, no. 15, pp. 23867–23876, Jun. 2020, https://doi.org/10.1016/j.ceramint.2020.06.163.

S. Merselmiz et al., “Design of lead-free BCZT-based ceramics with enhanced piezoelectric energy harvesting performances,” Phys. Chem. Chem. Phys., 2022, https://doi.org/10.1039/D1CP04723J.

W. Cai et al., “Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics,” J. Mater. Sci., vol. 55, no. 23, pp. 9972–9992, Aug. 2020, https://doi.org/10.1007/s10853-020-04771-8.

H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, “High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook,” Adv. Funct. Mater., vol. 28, no. 42, p. 1803665, Oct. 2018, https://doi.org/10.1002/adfm.201803665.

Y. Zhou, Q. Lin, W. Liu, and D. Wang, “Compositional dependence of electrocaloric effect in lead-free (1 - X)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics,” RSC Adv., vol. 6, no. 17, pp. 14084–14089, 2016, https://doi.org/10.1039/c5ra26692k.

C. Zhao, J. Yang, Y. Huang, X. Hao, and J. Wu, “Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions,” J. Mater. Chem. A, vol. 7, no. 44, pp. 25526–25536, 2019, https://doi.org/10.1039/c9ta10164k.

S. Patel, P. Sharma, and R. Vaish, “Enhanced electrocaloric effect in Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9–x Sn x O 3 ferroelectric ceramics,” Phase Transitions, vol. 89, no. 11, 2016, https://doi.org/10.1080/01411594.2016.1144752.

S. Merselmiz et al., “Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics,” J. Mater. Sci. Mater. Electron., vol. 31, no. 19, pp. 17018–17028, Oct. 2020, https://doi.org/10.1007/s10854-020-04259-w.

L. B. Kong, H. Huang, and S. Li, “Fundamentals of Ferroelectric Materials,” in Ferroelectric Materials for Energy Applications, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 1–31, https://doi.org/10.1002/9783527807505.ch1.

B. Zhang et al., “Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics,” Ceram. Int., vol. 47, no. 1, pp. 1101–1108, Jan. 2021, https://doi.org/10.1016/j.ceramint.2020.08.226.

P. Wu et al., “Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary,” J. Alloys Compd., vol. 725, pp. 275–282, Nov. 2017, https://doi.org/10.1016/j.jallcom.2017.07.103.

X. Wang et al., “Giant electrocaloric effect in lead-free Ba 0.94 Ca 0.06 Ti 1− x Sn x O 3 ceramics with tunable Curie temperature,” Appl. Phys. Lett., vol. 107, no. 25, p. 252905, Dec. 2015, https://doi.org/10.1063/1.4938134.

S. Liu et al., “Tunable electrocaloric and energy storage behavior in the Ce, Mn hybrid doped BaTiO3 ceramics,” J. Eur. Ceram. Soc., vol. 38, no. 14, pp. 4664–4669, Nov. 2018, https://doi.org/10.1016/j.jeurceramsoc.2018.06.020.

Z. Li, C. Molin, A. Michaelis, and S. E. Gebhardt, “Modified (Ba,Sr)(Sn,Ti)O3 via hydrothermal synthesis for electrocaloric application,” Open Ceram., vol. 16, p. 100502, Dec. 2023, https://doi.org/10.1016/j.oceram.2023.100502.

Z. Liu et al., “ Large electrocaloric and pyroelectric energy harvesting effect over a broad temperature range via modulating the relaxor behavior in non-relaxor ferroelectrics ,” J. Mater. Chem. A, vol. 9, no. 38, pp. 22015–22024, 2021, https://doi.org/10.1039/d1ta03894j.

Y. Zhao, X. Q. Liu, S. Y. Wu, and X. M. Chen, “Electrocaloric effect and pyroelectric energy harvesting in diffuse ferroelectric Ba(Ti1-xCex)O3 ceramics,” J. Electroceramics, vol. 43, no. 1–4, pp. 106–116, Dec. 2019, https://doi.org/10.1007/s10832-019-00183-6.




DOI: https://doi.org/10.33180/InfMIDEM2024.401

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Soukaina Merselmiz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.