Radiation analysis of optimized wearable antenna sensor at 2.4GHz on human body for WBAN Applications
Abstract
Keywords
Full Text:
PDFReferences
. Hamdi, Abdelaziz & Nahali, Amina & Mokhtar, Harrabi & Brahem, Rafik. (2023). Optimized design and performance analysis of wearable antenna sensors for wireless body area network applications. Journal of Information and Telecommunication. 7. 1-21. 10.1080/24751839.2023.2179909.
. Amiri, Marwen & Hamdi, Abdelaziz & Meddeb, Aref. (2023). Design of wearable antenna sensors and Path loss Modeling for Internet of Wearable Things applications. 10.22541/au.168923527.71512865/v1.
D. M. G. Preethichandra, Lasitha Piyathilaka, Umer Izhar, Rohan Samarasinghe, And Liyanage C. De Silva, “Wireless Body Area Networks and Their Applications—A Review”, Volume 11, IEEE Access 2023. DOI: 10.1109/ACCESS.2023.3239008
. Tavera, C. A., Ortiz, J. H., Khalaf, O. I., Saavedra, D. F., & Aldhyani, T. H. (2021). Wearable wireless body area networks for medical applications. Computational and Mathematical Methods in Medicine, 2021, 1–9. https://doi.org/10.1155/2021/5574376
. Saravanakumar, G., Devi, T. M., Karthikeyan, N., & Samuel, B. J. (2021). Secure medical data transmission for DT-WBAN in military environment. Materials Today: Proceedings.
. Jin, W. (2022). Design of intelligent perception module based on wireless sensor network and basketball sports attitude. Wireless Communications and Mobile Computing, 2022, 1–11. https://doi. org/10.1155/2022/8227604
. Ahmed, G., Islam, S. U., Shahid, M., Akhunzada, A., Jabbar, S., Khan, M. K., Riaz, M., & Han, K. (2018). Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare. IEEE Access, 6, 29602–29610. https://doi.org/10.1109/ACCESS.2018.2839909
. Yazdandoost K. Channel model for body area network (BAN). IEEE 802.15-08-0780-05-0006. 2009.
. Hamdi A, Nahali A, Harrabi M, Brahem R. Optimized design and performance analysis of wearable antenna sensors for wireless body area network applications. Journal of Information and Telecommunication. 2023:1–21.
. Al-Barazanchi I, Hashim W, Ahmed Alkahtani A, et al. Remote Monitoring of COVID-19 Patients Using Multisensor Body Area Network Innovative System.. Computational Intelligence & Neuroscience. 2022.
. Salehi SA, Razzaque MA, Tomeo-Reyes I, Hussain N. IEEE 802.15. 6 standard in wireless body area networks from a healthcare point of view. In: IEEE. 2016:523–528.
. Bharadwaj R, Parini C, Koul SK, Alomainy A. Influence of spatial distribution of base-stations on off-body path loss statistics for wireless body area network applications. Wireless Networks. 2021;27(7):4759–4772.
. Mohamed M, Maiseli BJ, Ai Y, Mkocha K, Al-Saman A. In-body sensor communication: Trends and challenges. IEEE Electromagnetic Compatibility Magazine. 2021;10(2):47–52.
. Paracha, K.N.; Rahim, S.K.A.; Soh, P.J.; Khalily, M. Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing. IEEE Access 2019, 7, 56694–56712.
. Mariam El Gharbi , Raúl Fernández-García , Saida Ahyoud and Ignacio Gil, “A Review of FlexibleWearable Antenna Sensors: Design, Fabrication Methods, and Applications”, Materials 2020, 13, 3781; doi:10.3390/ma13173781.
. M. Koohestani, J.-F. Zürcher, A. Moreira, and A. Skrivervik, ‘‘A novel, low-profile, vertically-polarized UWB antenna forWBAN,’’ IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1888–1894, Apr.
. Marwen Amiri, Abdelaziz Hamdi, and Aref Meddeb, “Design of wearable antenna sensors and Path loss Modeling for Internet of Wearable Things applications”, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,2023.
. Abdelaziz Hamdi, Amina Nahali, Mokhtar Harrabi & Rafik Brahem, “Optimized design and performance analysis of wearable antenna sensors for wireless body area network applications”, Journalof Information and Telecommunication, 2023, 7:2, 155-175, DOI: 10.1080/24751839.2023.2179909
. AL-Asadi AMQ, Wadday AG. A Review of the Channel Modeling Characteristics and Techniques for Body Area Network. Current Approaches in Science and Technology Research Vol. 6. 2021:34–50.
. Bouayad A, Chaoui NEH, El Ghazi M. Modeling and simulation of a wireless body area network for monitoring sick patient remotely. 2015.
. Boumaiz M, El Ghazi M, Mazer S, El Bekkali M, Bouayad A, Fattah M. Performance analysis of DQPSK and DBPSK modulation schemes for a scheduled access phase based Wireless Body Area Network. In: IEEE. 2018:163–167.
. Zuniga M, Krishnamachari B. Analyzing the transitional region in low power wireless links. In: IEEE. 2004:517–526.
. Baccour N, Koubâa A, Jamâa MB, Youssef H, Zuniga M, Alves M. A comparative simulation study of link quality estimators in wireless sensor networks. In: IEEE. 2009:1–10.
. Boumaiz M, Bekkali ME, Bouayad A, Fattah M. The Impact of Distance between Neighboring WBANs on IEEE 802.15. 6 Performances. In: IEEE. 2019:1–4.
. BOUMAIZ M, EL GHAZI M, BOUAYAD A, FATTAH M, EL BEKKALI M, MAZER S. The impact of transmission power on the performance of a WBAN prone to mutual interference. In: IEEE. 2019:1–4.
. Boumaiz M, El Ghazi M, Fattah M, Bouayad A, El Bekkali M. The Effects of Transmission Power and Modulation Schemes on the Performance of WBANs in On-Body Medical Applications. Adv Sci Technol Eng Syst J. 2020;5(4):783–794.
. Boumaiz M, El Ghazi M, Fattah M, Bouayad A, El Bekkali M. Analysing the Impact of Mutual Interference in Body Area Networks. Technology and Economics of Smart Grids and Sustainable Energy. 2021;6:1–12.
. Särestöniemi M, Kissi C, Raez CP, Hämäläinen M, Iinatti J. Impact of the antenna-body distance on the WBAN channel characteristics. In: IEEE. 2019:1–6.
. Särestöniemi M, Pomalaza-Ráez C, Kissi C, Berg M, Hämäläinen M, Iinatti J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE access. 2020;8:55953–55968.
. Särestöniemi M, Pomalaza-Raez C, Iinatti J. Radio Channel Study for Colon Capsule Endoscopy with Low-Band UWB Multiple Antenna System. In: IEEE. 2022:1–6.
. Nahali A, Hamdi A, Braham R. Body area networks: Path loss modeling and antenna design. In: IEEE. 2018:174–179.
. Hamdi A, Nahali A, Braham R. A Wireless Body Area Network of Intelligent Sensors for Biomedical Applications: Design and Performance Analysis. In: IEEE. 2022:30–37.
. Hall PS, Hao Y, Nechayev YI, et al. Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine. 2007;49(3):41–58.
. Alves T, Poussot B, Laheurte JM. Analytical propagation modeling of BAN channels based on the creeping-wave theory. IEEE Transactions on Antennas and Propagation. 2010;59(4):1269–1274.
K. N. Raju, A. Kavitha and C. S. R. Kaitepalli, (2023) "Halloween Structured Microstrip MIMO Radiator at 5G sub-6GHz and mm-wave Frequencies," 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, pp. 1-6, doi: 10.1109/PCEMS58491.2023.10136106.
Raju, K.N., Kavitha, A. & Sekhar, K.C. (2023) Design and performance analysis of miniaturized dual-band micro-strip antenna loaded with double negative meta-materials. Microsyst Technol 29, 1029–1038. https://doi.org/10.1007/s00542-023-05494-x
K. Naga Raju & A. Kavitha (2023) Linear phased meta-material incorporated patch antenna array at sub-6 GHz for 5G base stations, International Journal of Electronics, DOI: 10.1080/00207217.2023.2248570
. Rudrama KR, Christina GC, Teja R, Kumar PN, Anush M, Rao KS. A Novel approach forWearable Antenna Design for Biomedical Applications. Transactions on Electrical and Electronic Materials. 2022;23(6):693–702.
. Zaini SM, Rani KA. Wearable inset-Fed FR4 microstrip patch antenna design. In: . 318. IOP Publishing. 2018:012050.
. Christina G, Rajeswari A, Lavanya M, Keerthana J, Ilamathi K, Manoranjitha V. Design and development of wearable antennas for tele-medicine applications. In: IEEE. 2016:2033–2037.
DOI: https://doi.org/10.33180/InfMIDEM2024.403
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 padyala padmavathi manohar prasad, Nallathambi Kanagasabai
This work is licensed under a Creative Commons Attribution 4.0 International License.