Effect of a new methacrylic monomer on diode parameters of Ag/p-Si Schottky contact

Necati Basman


1-[4-(prop-2-yn-1-yloxy)phenyl]ethanone-O-methacryloyloxime (POEMO) is a new methacrylic monomer with side chain alkyne.  In this study, Ag/POEMO/p-Si Schottky metal-interlayer-semiconductor (MIS) diode was fabricated and its diode parameters were investigated. Using the forward bias current-voltage (I-V) characteristic, the ideality factor and barrier height of the MIS structure were found as 2.81 and 0.70 eV, respectively. The barrier height value of 0.70 eV obtained for Ag/POEMO/p-Si MIS diode was higher than the value of 0.64 of conventional Ag/p-Si Schottky diode. Cheung-Cheung and Norde methods were also used to extract ideality factor, barrier height and series resistance values, and the obtained results were compared.


Schottky diode; electrical characterization; methacrylic monomer

Full Text:




Zeng L (2010) Organic Materials for Electronic Devices, Dissertation, School of Engineering and Applied Sciences, University of Rochester

Gullu O, Biber M, Turut A (2008) Electrical characteristics and inhomogeneous arrier analysis of aniline green/p-Si heterojunctions. J Mater Sci: Mater Electron 19, 986–991. doi: 10.1007/s10854-007-9431-1

Gullu O, Asubay S, Aydogan S, Turut A (2010) Electrical characterization of the Al/newfuchsin/n-Si organic-modified device. Phys E 42, 1411-1416. doi:10.1016/j.physe.2009.11.079

Basman N, Uzun O, Fiat S, Alkan C, Cankaya G (2012) Electrical characterization of a pre-ceramic polymer modified Ag/poly(hydridocarbyne)/p-Si Schottky barrier diode. J Mater Sci: Mater Electron, 23, 2282–2288. doi: 10.1007/s10854-012-0819-1

Migahed MD, Fahmy T, Ishra M, Barakat A (2004) Preparation, characterization, and electrical conductivity of polypyrrole composite films. Polym Test 23, 361-365. doi:10.1016/S0142-9418(03)00101-6

El-Nahass MM, Abd-El-Rahman KF, Farag AAM, Darwish AAA (2005) Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions. Org Electron, 6(3), 129-136. doi:10.1016/j.orgel.2005.03.007

Aydogan S, Saglam M, Turut A (2005) Current–voltage and capacitance–voltage characteristics of polypyrrole/p-InP structure. Vacuum 77, 269-274. doi:10.1016/j.vacuum.2004.10.003

Aydogan S, Gullu O, Turut A (2008) Fabrication and electrical properties of Al/aniline green/n-Si/AuSb structure. Mater Sci Semicond Process 11, 53-58. doi:10.1016/j.mssp.2008.11.004

Yakuphanoglu F, Kandaz M, Senkal BF (2008) Current–voltage and capacitance–voltage characteristics of Al/p-type silicon/organic semiconductor based on phthalocyanine rectifier contact. Thin Solid Films 516, 8793-8796. doi:10.1016/j.tsf.2008.06.076

Soykan C, Sahan A, Yakuphanoglu F (2010) Synthesis and Semi-conducting Properties of Novel 2-(4-Chloro-1-naphtyloxy)-2-oxoethyl Methacrylate with 2-(Dimethylamino)Ethyl Methacrylate Copolymers, Quaternized Amino Groups. J Macromol Sci, Part A: Pure Appl Chem 48, 169-176. doi:10.1080/10601325.2011.537537

Erol I, Ozcakir R, Gurler Z (2015) Novel functional methacrylate copolymers with side chain tertiary amine and alkynes and their some properties. J Polym Res 22 (1),


Desai JA, Dayal U, Parsania PH (1996) Synthesis and Characterization of Cardo Polysulfonates of 1,1′-Bis(4-Hydroxy Phenyl)Cyclohexane with 1,3-Benzene and 2,4-Toluene Disulfonyl Chlorides. J Macromol Sci, Part A: Pure Appl Chem 33, 113-1122. doi:10.1080/10601329608010908

Rhoderick EH, Williams RH (1988) Metal–Semiconductor Contacts. Clarendon Press: Oxford

Akkılıc K, Turut A, Cankaya G, Kılıcoglu T (2003). Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes. Solid State Commun 125, 551-556. doi:10.1016/S0038-1098(02)00829-3

Werner H, Rau U, Luy JF, Russer P (1994) Springer Series in Electronics and Photonic. Springer Series: Berlin

Karatas S (2005) Comparison of electrical parameters of Zn/p-Si and Sn/p-Si Schottky barrier diodes. Solid State Commun 135, 500-504. doi:10.1016/j.ssc.2005.05.038

Turut A (2012) Determination Of Barrier Height Temperature Coefficient By Norde’s Method In Ideal Co/N-Gaas Schottky Contacts. Turk J Phys 36, 235-244. doi:10.3906/fiz-1103-8

Gullu O, Turut A (2010) Electrical analysis of organic dye-based MIS Schottky contacts. Microelectron Eng 87, 2482-2487. doi:10.1016/j.mee.2010.05.004

Gullu O, Turut A (2009). Electrical analysis of organic interlayer based etal/interlayer/semiconductor diode structures. J Appl Phys 106, 103717. doi:10.1063/1.3261835

Sze SM (1981) Physics of Semiconductor Devices (2nd). Wiley, New York

Mönch W J (1999) Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J Vac Sci Technol B 17, 1867-1876. doi:10.1116/1.590839

Reddy YM, NagarajMK, Siva Pratap Reddy M., Jung-Hee Lee, Reddy V R (2013) Temperature-Dependent Current–Voltage (I–V) and Capacitance–Voltage (C–V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes. Braz J Phys 43, 13-21.


Schmitsdorf RF, Kampen TU, Mönch W (1997) Explanation of the Linear Correlation between Barrier Heights and Ideality Factors of Real Metal-Semiconductor Contacts by Laterally Nonuniform Schottky Barriers. J Vac Sci Technol B 1997, 15 (4), 1221-1126. doi:10.1116/1.589442

Vanalme GM, Goubert L, Van Meirhaeghe RL, Cardon F, Van Daele P (1999). A ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/III-V semiconductor Schottky barrier contacts by chemical pretreatments. Semicond Sci Technol 14, 871-879. doi:10.1088/0268-1242/14/9/321

Tung RT (1992). Electron transport at metal-semiconductor interfaces: General theory. Phys Rev B 45, 13509-13523. doi:10.1103/PhysRevB.45.13509

Ozmen OT, Yaglioglu E (2014) Electrical and interfacial properties of Au/P3HT:PCBM/n-Si Schottky barrier diodes at room temperature. Mater Sci Semicond Process 26, 448. doi:10.1016/j.mssp.2014.04.013

Acar S, Karadeniz S, Tugluoglu N, Selcuk AB, Kasap M (2004). Gaussian distribution of inhomogeneous barrier height in Ag/p-Si (1 0 0) Schottky barrier diodes. Appl Surf Sci 233, 373- 381. doi:10.1016/j.apsusc.2004.04.011

Vearey-Roberts AR, Evans DA (2005) Modification of GaAs Schottky diodes by thin organic interlayers. Appl Phys Lett 86, 072105. doi:10.1063/1.1864255

Temirci C, Cakar M (2004) The current–voltage and capacitance–voltage characteristics of Cu/rhodamine 101/p-Si contacts. Phys B 348, 454-458. doi:10.1016/j.physb.2004.01.149

Karatas S, Temirci C, Cakar M, Turut A (2006) Temperature dependence of the current–voltage characteristics of the Al/Rhodamine-101/p-Si(100) contacts. Appl Surf Sci 252, 2209-2216. doi:10.1016/j.apsusc.2005.03.222

Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 8587. doi:10.1063/1.97359

Yakuphanoglu F, Okur S (2010) Analysis of electronic parameters and interface states of boron dispersed triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f techniques. Microelectron Eng 87, 3034. doi:10.1016/j.mee.2009.05.012

Aydogan S, Saglam M, Turut A, Onganer, Y (2009) Series Resistance Determination Of Au/Polypyrrole /P-Si/Al Structure By Current–Voltage Measurements At Low Temperatures. Mater Sci Eng 29, 1486-1490. doi:10.1016/j.msec.2008.12.006

Norde H J (1979) A modified forward I-V plot for Schottky diodes with high series resistance. Appl. Phys. 1979, 50, 5052. doi:10.1063/1.325607

Karatas S, Yakuphanoglu F (2012) Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. J Alloys Compd 537 , 6-11. doi:10.1016/j.jallcom.2012.05.025

Al-Ghamdi AA, Al-Ghamdi AA, Al-Hartomy OA, Nawar AM, El-Gazzar E, El-Tantawy F, Yakuphanoglu F (2013) Novel photoconductive Ag/nanostructure ruthenium oxide/p-type silicon Schottky barrier diode by sol–gel method. J Sol-Gel Sci Technol 67, 368-375. doi:10.1007/s10971-013-3090-x

Saglam M, Ayyildiz E, Gumus A, Turut A, Efeoglu H, Tuzemen S (1996) Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes. Appl Phys A: Mater Sci Process. 1996, 62, 269-273. doi:10.


  • There are currently no refbacks.