Challenges for Large-Scale Deployment of WBG in Power Electronics

Henrik Lavrič, Peter Zajec, Klemen Drobnič, Andraž Rihar, Vanja Ambrožič, Danjel Vončina, Mitja Nemec

Abstract


As the demand for efficient and high-performance power electronic devices continues to grow, wide bandgap (WBG) semiconductors have emerged as a promising solution due to their superior characteristics. However, realizing their full potential requires not only the development of advanced semiconductor materials but also the optimization of packaging techniques. This paper examines the crucial role of packaging in leveraging the benefits of WBG devices, with a particular focus on mitigating inductance and addressing other critical concerns. Drawing from previous research and discussions, we explore various strategies to minimize inductance effects, enhance thermal management, ensure reliability, and optimize electrical performance. Through an interdisciplinary approach that encompasses electrical engineering, materials science, and mechanical engineering principles, this paper highlights the latest advancements in WBG device packaging, providing valuable insights for researchers and engineers working towards more efficient and reliable power electronic systems.

Keywords


wide bandgap; semiconductors; power electronics; packaging; design

Full Text:

PDF

References


O. S. Chaudhary, M. Denaï, S. S. Refaat, and G. Pissanidis, “Technology and Applications of Wide Bandgap Semiconductor Materials: Current State and Future Trends,” Energies, vol. 16, no. 18, p. 6689, Sep. 2023, doi: 10.3390/en16186689.

“Power Electronics Market Size to Hit US$ 32.59 Billion by 2032.” Accessed: Jan. 19, 2024. [Online]. Available: https://www.precedenceresearch.com/power-electronics-market

J. Millan, “A review of WBG power semiconductor devices,” in CAS 2012 (International Semiconductor Conference), Sinaia, Romania: IEEE, Oct. 2012, pp. 57–66. doi: 10.1109/SMICND.2012.6400696.

Allied Market Research, “Wide Bandgap Semiconductors Market Size & Trends 2032,” Allied Market Research. Accessed: Sep. 06, 2024. [Online]. Available: https://www.alliedmarketresearch.com/wide-bandgap-semiconductors-market

J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, May 2014, doi: 10.1109/TPEL.2013.2268900.

M. H. Wong, O. Bierwagen, R. J. Kaplar, and H. Umezawa, “Ultrawide-bandgap semiconductors: An overview,” J. Mater. Res., vol. 36, no. 23, pp. 4601–4615, Dec. 2021, doi: 10.1557/s43578-021-00458-1.

S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, “Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS,” J. Appl. Phys., vol. 124, no. 22, p. 220901, Dec. 2018, doi: 10.1063/1.5062841.

A. L. Hickman et al., “Next generation electronics on the ultrawide-bandgap aluminum nitride platform,” Semicond. Sci. Technol., vol. 36, no. 4, p. 044001, Apr. 2021, doi: 10.1088/1361-6641/abe5fd.

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 907–914, May 2003, doi: 10.1109/TPEL.2003.810840.

K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. Berlin: Springer, 2007.

T. P. Chow, “Progress in High Voltage SiC and GaN Power Switching Devices,” Mater. Sci. Forum, vol. 778–780, pp. 1077–1082, 2014, doi: 10.4028/www.scientific.net/MSF.778-780.1077.

T. P. Chow, “Wide bandgap semiconductor power devices for energy efficient systems,” in 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA: IEEE, Nov. 2015, pp. 402–405. doi: 10.1109/WiPDA.2015.7369328.

X. Ding, Y. Zhou, and J. Cheng, “A review of gallium nitride power device and its applications in motor drive,” CES Trans. Electr. Mach. Syst., vol. 3, no. 1, pp. 54–64, Mar. 2019, doi: 10.30941/CESTEMS.2019.00008.

N. Kim, J. Yu, W. Zhang, R. Li, M. Wang, and W. T. Ng, “Current Trends in the Development of Normally-OFF GaN-on-Si Power Transistors and Power Modules: A Review,” J. Electron. Mater., vol. 49, no. 11, pp. 6829–6843, Nov. 2020, doi: 10.1007/s11664-020-08284-7.

M. Meneghini et al., “GaN-based power devices: Physics, reliability, and perspectives,” J. Appl. Phys., vol. 130, no. 18, p. 181101, Nov. 2021, doi: 10.1063/5.0061354.

L. Cheng, J.-Y. Yang, and W. Zheng, “Bandgap, Mobility, Dielectric Constant, and Baliga’s Figure of Merit of 4H-SiC, GaN, and β-Ga 2 O 3 from 300 to 620 K,” ACS Appl. Electron. Mater., vol. 4, no. 8, pp. 4140–4145, Aug. 2022, doi: 10.1021/acsaelm.2c00766.

A. Lidow, M. de Rooij, J. Strydom, D. Reusch, and J. Glaser, “GaN Transistors for Efficient Power Conversion,” John Wiley Sons, 2019.

A. Udabe, I. Baraia-Etxaburu, and D. G. Diez, “Gallium Nitride Power Devices: A State of the Art Review,” IEEE Access, vol. 11, pp. 48628–48650, 2023, doi: 10.1109/ACCESS.2023.3277200.

B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Lett., vol. 10, no. 10, pp. 455–457, Oct. 1989, doi: 10.1109/55.43098.

Avnet, “Combining GaN and SiC for cost-effective power conversion | Avnet Silica.” Accessed: Sep. 06, 2024. [Online]. Available: https://my.avnet.com/silica/resources/article/combining-gan-sic-for-cost-effective-power-conversion/

Y. Qin et al., “Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective,” J. Phys. Appl. Phys., vol. 56, no. 9, p. 093001, Mar. 2023, doi: 10.1088/1361-6463/acb4ff.

Y. Yang, L. Dorn-Gomba, R. Rodriguez, C. Mak, and A. Emadi, “Automotive Power Module Packaging: Current Status and Future Trends,” IEEE Access, vol. 8, pp. 160126–160144, 2020, doi: 10.1109/ACCESS.2020.3019775.

K. Wada and M. Ando, “Switching Loss Analysis of SiC-MOSFET based on Stray Inductance Scaling,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata: IEEE, May 2018, pp. 1919–1924. doi: 10.23919/IPEC.2018.8507986.

D. N. Dalal et al., “Impact of Power Module Parasitic Capacitances on Medium-Voltage SiC MOSFETs Switching Transients,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 298–310, Mar. 2020, doi: 10.1109/JESTPE.2019.2939644.

S. Daryanani, “Package Innovations for SiC Power Devices,” Power Electronics News. Accessed: Sep. 06, 2024. [Online]. Available: https://www.powerelectronicsnews.com/package-innovations-for-sic-power-devices/

M. Meisser, M. Schmenger, and T. Blank, “Parasitics in Power Electronic Modules: How parasitic inductance influences switching and how it can be minimized,” presented at the PCIM Europe 2015, Nuremberg, Germany, 2015.

H. Ma, Y. Yang, L. Wu, Y. Wen, and Q. Li, “Review of the designs in low inductance SiC half-bridge packaging,” IET Power Electron., vol. 15, no. 11, pp. 989–1003, 2022, doi: 10.1049/pel2.12290.

M. Goetz, “Silicon Nitride Substrates for Improved Performance in Power Electronics.” Accessed: Sep. 06, 2024. [Online]. Available: https://eepower.com/technical-articles/silicon-nitride-substrates-for-improved-performance-in-power-electronics/

Y. Shi, Z. Wang, and Z. Wang, “Fine-Pitch Cu-Sn Transient-Liquid-Phase Bonding Based on Reflow and Pre-Bonding,” in 2022 China Semiconductor Technology International Conference (CSTIC), Jun. 2022, pp. 1–3. doi: 10.1109/CSTIC55103.2022.9856899.

L. Wang, W. Wang, R. J. E. Hueting, G. Rietveld, and J. A. Ferreira, “Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging,” IEEE Trans. Power Electron., vol. 38, no. 1, pp. 472–490, Jan. 2023, doi: 10.1109/TPEL.2022.3200469.

E. M. Dede, “Thermal Packaging Challenges for Next-Generation Power Electronics,” presented at the Applied Power Electronics Conference, New Orleans, LA, USA, 2020.

R. Zhang and Y. Zhang, “Power device breakdown mechanism and characterization: review and perspective,” Jpn. J. Appl. Phys., vol. 62, no. SC, p. SC0806, Apr. 2023, doi: 10.35848/1347-4065/acb365.

A. J. Wileman, S. Aslam, and S. Perinpanayagam, “A road map for reliable power electronics for more electric aircraft,” Prog. Aerosp. Sci., vol. 127, p. 100739, Nov. 2021, doi: 10.1016/j.paerosci.2021.100739.

C. Chen, F. Luo, and Y. Kang, “A review of SiC power module packaging: Layout, material system and integration,” CPSS Trans. Power Electron. Appl., vol. 2, no. 3, pp. 170–186, Sep. 2017, doi: 10.24295/CPSSTPEA.2017.00017.

H. Kang, A. Sharma, and J. P. Jung, “Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics,” Metals, vol. 10, no. 7, p. 934, Jul. 2020, doi: 10.3390/met10070934.

F. Hou et al., “Review of Packaging Schemes for Power Module,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 223–238, Mar. 2020, doi: 10.1109/JESTPE.2019.2947645.

R. K. Williams, M. N. Darwish, R. A. Blanchard, R. Siemieniec, P. Rutter, and Y. Kawaguchi, “The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, and Reliability,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 692–712, Mar. 2017, doi: 10.1109/TED.2017.2655149.

N. Massey, “LFPAK88 takes a shorter path to efficiency,” Nexperia. Accessed: Sep. 13, 2024. [Online]. Available: https://efficiencywins.nexperia.com/efficient-products/LFPAK88-takes-a-shorter-path-to-efficiency

T. Radke and N. Lakshmanan, “The Next Generation of High Power IGBT Modules,” Bodos Power Syst., vol. 5, pp. 42–45, 2019.

I. Kasko, S. E. Berberich, M. Spang, and S. Oehling, “SiC MOS Power Module in Direct Pressed Die Technology and some Challenges for Implementation,” in 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Sep. 2020, pp. 364–367. doi: 10.1109/ISPSD46842.2020.9170196.

“Semikron Danfoss, Webinar: eMPack Power Module Family – Building Scalable and Highly Efficient Traction Inverters | Semikron Danfoss.” Accessed: Sep. 13, 2024. [Online]. Available: https://www.semikron-danfoss.com/about-semikron-danfoss/webinars/empack-power-module-family-building-scalable-and-highly-effcient-traction-inverters.html

A. P. Pai, M. Ebli, T. Simmet, A. Lis, and M. Beninger-Bina, “Characteristics of a SiC MOSFET-based Double Side Cooled High Performance Power Module for Automotive Traction Inverter Applications,” in 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Jun. 2022, pp. 831–836. doi: 10.1109/ITEC53557.2022.9813878.

M. Liu, A. Coppola, M. Alvi, and M. Anwar, “Comprehensive Review and State of Development of Double-Sided Cooled Package Technology for Automotive Power Modules,” IEEE Open J. Power Electron., vol. 3, pp. 271–289, 2022, doi: 10.1109/OJPEL.2022.3166684.

C. DiMarino et al., “A Wire-bondless 10 kV SiC MOSFET Power Module with Reduced Common-mode Noise and Electric Field,” presented at the PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2018, pp. 1–7.

F. Denk et al., “R DS(on) vs. inductance: comparison of SiC MOSFETs in 7pin D2Pak and 4pin TO‐247 and their benefits for high‐power MHz inverters,” IET Power Electron., vol. 12, no. 6, pp. 1349–1356, May 2019, doi: 10.1049/iet-pel.2018.5838.

C. Zhao, L. Wang, F. Zhang, and F. Yang, “A Method to Balance Dynamic Current of Paralleled SiC MOSFETs With Kelvin Connection Based on Response Surface Model and Nonlinear Optimization,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2068–2079, Feb. 2021, doi: 10.1109/TPEL.2020.3009008.

S. Wang, “Electrical Design Considerations and Packaging of Power Electronic Modules,” Master Thesis, University of Arkansas, Fayetteville, AR, USA, 2013. [Online]. Available: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1857&context=etd

M. Portico, “Exploring Innovation in Motion Control Technology - Industry Articles.” Accessed: Sep. 13, 2024. [Online]. Available: https://eepower.com/industry-articles/driving-innovation-in-motion-control-applications/

M. Albayrak, K. Yamaguchi, and T. Nagahara, “„All-In-One“ DIPIPM+ Series for Compact Inverter Designs,” Bodo’s Power Systems, vol. 9, pp. 30–36, 2016.

A. Lidow, “GaN Integrated Power Stage – Redefining Power Conversion,” Bodo’s Power Systems, vol. 5, pp. 26–27, 2020.

G. Tang et al., “High-speed, high-reliability GaN power device with integrated gate driver,” in 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 2018, pp. 76–79. doi: 10.1109/ISPSD.2018.8393606.

L. Yang et al., “Electrical Performance and Reliability Characterization of a SiC MOSFET Power Module With Embedded Decoupling Capacitors,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10594–10601, Dec. 2018, doi: 10.1109/TPEL.2018.2809923.

P. Yeaman, “Powering the AI Revolution Efficiently and Cost Effectively - Technical Articles,” EEPower. Accessed: Sep. 13, 2024. [Online]. Available: https://eepower.com/technical-articles/powering-generative-ai-platforms-with-tco-at-the-core/

Infineon Technologies, “High density dual-phase power modules| TDM22544D & TDM22545D - Infineon Technologies.” Accessed: Sep. 13, 2024. [Online]. Available: https://www.infineon.com/cms/media/pss-3dmodels/dual-phase-power-module/

Infineon Technologies, “600 V CoolMOSTM S7 with temperature sense.” Jul. 29, 2024. [Online]. Available: https://www.infineon.com/dgdl/Infineon-MOSFET_CoolMOS_600V_S7T_with_integrated_temparature_sensor-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8b6555fe018bd8faa70d47ba

Infineon Technologies, “OptiMOS Powerstage TDA21570.” Accessed: Sep. 13, 2024. [Online]. Available: https://www.infineon.com/dgdl/Infineon-TDA21570-DataSheet-v02_00-EN.pdf?fileId=5546d46279cccfdb0179e505726c7d7a&ack=t

STM, “STSPIN32F0: Advanced BLDC controller with embedded STM32 MCU.” Mar. 2017. [Online]. Available: https://www.st.com/resource/en/datasheet/stspin32f0.pdf

Y. Wang, Y. Ding, and Y. Yin, “Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review,” Energies, vol. 15, no. 18, p. 6670, Sep. 2022, doi: 10.3390/en15186670.

S. Daryanani, “Embedded PCB packaging of WBG Power Electronics,” Power Electronics News. Accessed: Sep. 13, 2024. [Online]. Available: https://www.powerelectronicsnews.com/embedded-pcb-packaging-of-wbg-power-electronics/

S. Buschhorn, “Advanced Cooling Concept Improves Lifetime Performance – A Case Study - Technical Articles,” EEPower. Accessed: Sep. 13, 2024. [Online]. Available: https://eepower.com/technical-articles/advanced-cooling-concept-improves-lifetime-performance-a-case-study/

I. Kovacevic-Badstubner, D. Romano, G. Antonini, J. Ekman, and U. Grossner, “Electromagnetic Modeling Approaches Towards Virtual Prototyping of WBG Power Electronics,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata: IEEE, May 2018, pp. 3588–3595. doi: 10.23919/IPEC.2018.8507365.

Ansys, “Ansys Q3D Extractor.” [Online]. Available: https://www.ansys.com/content/dam/amp/2022/may/asset-creation/q3d-extractor-datasheet/ansys-q3d-extractor-datasheet.pdf

I. Kovacevic-Badstuebner, R. Stark, U. Grossner, M. Guacci, and J. W. Kolar, “Parasitic Extraction Procedures for SiC Power Modules,” in CIPS 2018; 10th International Conference on Integrated Power Electronics Systems, Mar. 2018, pp. 1–6. Accessed: Sep. 13, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/8403157/?arnumber=8403157

S. Mazumder, M. Mandal, B. K. M, M. G, S. K. Roy, and K. Basu, “Measurement of Circuit Parasitics of a 200kW SiC based Stack,” in 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA: IEEE, Feb. 2024, pp. 1120–1124. doi: 10.1109/APEC48139.2024.10509473.

B. Sun, Z. Zhang, and M. A. E. Andersen, “Research of Low Inductance Loop Design in GaN HEMT Application,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC: IEEE, Oct. 2018, pp. 1466–1470. doi: 10.1109/IECON.2018.8591732.

B. Aberg, R. S. K. Moorthy, L. Yang, W. Yu, and I. Husain, “Estimation and minimization of power loop inductance in 135 kW SiC traction inverter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA: IEEE, Mar. 2018, pp. 1772–1777. doi: 10.1109/APEC.2018.8341257.

J. Hammer, I. G. Zurbriggen, M. Ali Saket, and M. Ordonez, “Low Inductance PCB Layout for GaN Devices: Interleaving Scheme,” in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA: IEEE, Jun. 2021, pp. 1537–1542. doi: 10.1109/APEC42165.2021.9487045.

B. Sun, K. L. Jorgensen, Z. Zhang, and M. A. E. Andersen, “Research of Power Loop Layout and Parasitic Inductance in GaN Transistor Implementation,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1677–1687, Mar. 2021, doi: 10.1109/TIA.2020.3048641.

X. Liu, S. Shafie, M. A. M. Radzi, N. Azis, and A. H. A. Karim, “Modelling and mitigating oscillation in E-mode GaN HEMT: A simulation-based approach to parasitic inductance optimization,” Microelectron. Reliab., vol. 152, p. 115293, Jan. 2024, doi: 10.1016/j.microrel.2023.115293.

X. Geng, C. Kuring, M. Wolf, O. Hilt, J. Wurfl, and S. Dieckerhoff, “Study on the Optimization of the Common Source Inductance for GaN Transistors,” in 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium: IEEE, Sep. 2021, pp. 1–10. doi: 10.23919/EPE21ECCEEurope50061.2021.9570437.

A. Chafi, N. Idir, A. Videt, and H. Maher, “Design Method of PCB Inductors for High-Frequency GaN Converters,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 805–814, Jan. 2021, doi: 10.1109/TPEL.2020.3000438.

Z. Qi, Y. Pei, L. Wang, Q. Yang, and K. Wang, “A Highly Integrated PCB Embedded GaN Full-Bridge Module With Ultralow Parasitic Inductance,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 4161–4173, Apr. 2022, doi: 10.1109/TPEL.2021.3128694.

A. B. Jorgensen, S. Beczkowski, C. Uhrenfeldt, N. H. Petersen, S. Jorgensen, and S. Munk-Nielsen, “A Fast-Switching Integrated Full-Bridge Power Module Based on GaN eHEMT Devices,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2494–2504, Mar. 2019, doi: 10.1109/TPEL.2018.2845538.

T. Liu, T. T. Y. Wong, and Z. J. Shen, “A New Characterization Technique for Extracting Parasitic Inductances of SiC Power MOSFETs in Discrete and Module Packages Based on Two-Port S-Parameters Measurement,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9819–9833, Nov. 2018, doi: 10.1109/TPEL.2017.2789240.

L. Pace, N. Defrance, A. Videt, N. Idir, J.-C. De Jaeger, and V. Avramovic, “Extraction of Packaged GaN Power Transistors Parasitics Using S-Parameters,” IEEE Trans. Electron Devices, vol. 66, no. 6, pp. 2583–2588, Jun. 2019, doi: 10.1109/TED.2019.2909152.

L. Pace, N. Idir, T. Duquesne, and J.-C. De Jaeger, “Parasitic Loop Inductances Reduction in the PCB Layout in GaN-Based Power Converters Using S-Parameters and EM Simulations,” Energies, vol. 14, no. 5, p. 1495, Mar. 2021, doi: 10.3390/en14051495.

W. Meng, F. Zhang, G. Dong, J. Wu, and L. Li, “Research on Losses of PCB Parasitic Capacitance for GaN-Based Full Bridge Converters,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4287–4299, Apr. 2021, doi: 10.1109/TPEL.2020.3024881.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Henrik Lavrič, Peter Zajec, Klemen Drobnič, Andraž Rihar, Vanja Ambrožič, Danjel Vončina, Mitja Nemec

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.