Lithography-Free, Crystal-Based Multiresonant Lamb Waves for Reconfigurable Microparticle Manipulation

Leslie Yeo, Amgad Rezk


Acoustic wave microfluidic devices, in particular those that exploit the use of surface acoustic waves (SAWs), have been demonstrated as a powerful tool for driving microfluidic actuation and bioparticle manipulation. A limitation of these devices, however, is the requirement for the fabrication of interdigital transducer electrodes on the piezoelectric substrate, which upon excitation of an AC electrical signal at resonance, generates the SAW. Not only is the lithographic fabrication a costly and cumbersome step, the necessity for driving the IDTs at resonance means that the device typically operates at a single frequency at its fundamental resonant state; the higher harmonics that may be available are often weak and negligible. As such, reconfiguring a device for different operating frequencies is usually difficult and almost always avoided. Here, we show a Lamb wave device which can mimic the microfluidic actuation and particle manipulation of SAW devices, but which can be fabricated without requiring any lithographic procedures. Moreover, we show that a large number of resonances are available, whose modes depends on harmonics associated with the substrate thickness, and, in particular, demonstrate this utility briefly for reconfigurable particle patterning.


acoustics; microfluidics; vibration; actuation; particle patterns

Full Text:



G. M. Whitesides. The Origins and Future of Microfluidics. Nature 442, 368–373 (2006).

E. K. Sackmann, A. L. Fulton and D. J. Beebe. The Present and Future Role of Microfluidics in Biomedical Research. Nature 507, 181–189 (2014).

L. Y. Yeo, H.-C. Chang, P. P. Y. Chan and J. R. Friend. Microfluidic Devices for Bioapplications. Small 7, 12–48 (2011).

D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner. Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels. Proc. Natl. Acad. Sci. USA 104, 18892–18897 (2007).

H.-C. Chang and L. Y. Yeo. Electrokinetically-Driven Microfluidics and Nanofluidics (Cambridge University, Cambridge, 2010).

K. Dholakia, P. Reece and M. Gu. Optical Micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008).

N. Pamme, J. C. T. Eijkel and A. Manz. On-Chip Free-Flow Magnetophoresis: Separation and Detection of Mixtures of Magnetic Particles in Continuous Flow. J. Magn. Magn. Mater. 307, 237–244 (2006).

T. Laurell, F. Petersson and A. Nilsson. Chip Integrated Strategies for Acoustic Separation and Manipulation of Cells and Particles. Chem. Soc. Rev. 36, 492–506 (2007).

L. Y. Yeo and J. R. Friend. Surface Acoustic Wave Microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

S.-C. S. Lin, X. Mao and T. J. Huang. Surface Acoustic Wave (SAW) Acoustophoresis: Now and Beyond. Lab Chip 12, 2766–2770 (2012).

G. Destgeer and H. J. Sung. Recent Advances in Microfluidic Actuation and Micro-Object Manipulation via Surface Acoustic Waves. Lab Chip 15, 2722–2738 (2015).

J. Nam, H. Lim and S. Shin. Manipulation of Microparticles Using Surface Acoustic Wave in Microfluidic Systems: A Brief Review. Korea-Aust. Rheol. J.23, 255–267 (2011).

X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I-K. Chiang, J. Shi, S. J. Benkovic and T. J. Huang. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 109, 11105–11109 (2012).

D. J. Collins, B. Morahan, J. Garcia-Bustos, C. Doerig, M. Plebanski and A. Neild. Two-Dimensional Single-Cell Patterning with One Cell Per Well Driven by Surface Acoustic Waves. Nat. Commun. 6, 8686 (2015).

J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I-K. Chiang, K. Sharp and T. J. Huang. Three-Dimensional Continuous Particle Focusing in a Microfluidic Channel via Standing Surface Acoustic Waves (SSAW). Lab Chip 11, 2319–2324 (2011).

F. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Suresh and T. J. Huang. Proc. Natl. Acad. Sci. USA 113, 1522–1527 (2016).

G. Destgeer, S. Im, B. H. Ha, J. H. Jung, M. A. Ansari and H. J. Sung. Adjustable, Rapidly Switching Microfluidic Gradient Generation Using Focused Travelling Surface Acoustic Waves. Appl. Phys. Lett. 104, 023506 (2014).

J. Behren, S. Langelier, A. R. Rezk, G. Lindner, L. Y. Yeo and J. R. Friend. Microscale Anechoic Architecture: Acoustic Diffusers for Ultra Low Power Microparticle Separation Via Traveling Surface Acoustic Waves. Lab Chip 15, 43–46 (2015).

D. J. Collins, A. Nield and Y. Ai. Highly Focused High-Frequency Travelling Surface Acoustic Waves (SAW) for Rapid Single-Particle Sorting. Lab Chip 16, 471–479 (2016).

H. Li, J. R. Friend and L. Y. Yeo. Surface Acoustic Wave Concentration of Particle and Bioparticle Suspensions. Biomed. Microdev. 9, 647–656 (2007).

R. Shilton, M. K. Tan, L. Y. Yeo and J. R. Friend. Particle Concentration and Mixing in Microdrops Driven by Focused Surface Acoustic Waves. J. Appl. Phys. 104, 014910 (2008).

R. V. Raghavan, J. R. Friend and L. Y. Yeo. Particle Concentration via Acoustically Driven Microcentrifugation: MicroPIV Flow Visualization and Numerical Modelling Studies. Microfluid. Nanofluid. 8, 73–84 (2010).

P. R. Rogers, J. R. Friend and L. Y. Yeo. Exploitation of Surface Acoustic Waves to Drive Size-Dependent Microparticle Concentration Within a Droplet. Lab Chip 10, 2979–2985 (2010).

M. B. Dentry, L. Y. Yeo and J. R. Friend. Frequency Effects on the Scale and Behavior of Acoustic Streaming. Phys. Rev. E 89, 013203 (2014).

R. J. Shilton, M. Travagliati, F. Beltram, M. Cecchini. Nanoliter-Droplet Acoustic Streaming via Ultra High Frequency Surface Acoustic Waves. Adv. Mater. 26, 4941–4946 (2014).

T. Frommelt, M. Kostur, M. Wenzel-Schäfer, P. Talkner, P. Hänggi and A. Wixforth. Microfluidic Mixing via Acoustically Driven Chaotic Advection. Phys. Rev. Lett. 100, 034502 (2008).

X. Ding, J. Shi, S.-C. S. Lin, S. Yazdi, B. Kiraly and T. J. Huang. Tunable Patterning of Microparticles and Cells Using Standing Surface Acoustic Waves. Lab Chip 12, 2491–2497 (2012).

A. R. Rezk, J. R. Friend and L. Y. Yeo. Simple, Low Cost MHz-Order Acoustomicrofluidics Using Aluminium Foil Electrodes. Lab Chip 14, 1802–1805 (2014).

A. R. Rezk, L. Y. Yeo and J. R. Friend. Poloidal Flow and Toroidal Particle Ring Formation in a Sessile Drop Driven by Megahertz Order Vibration. Langmuir 30, 11143–11247 (2014).

G. Destgeer, B. Ha, J. Park and H. J. Sung. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet. Anal. Chem. 88, 3976–3981 (2016).


  • There are currently no refbacks.