2D Simulation Study of p-type TFTs with Chemically Deposited Poly-PbS Active Channel



 In this work, the two-dimensional (2D) numerical simulation of p-type poly-PbS

TFT electrical characteristics are performed using a physically based device

simulator Atlas/Silvaco. The analytical expressions of defect density models

for acceptor- and donor-like traps are dened for poly-PbS thin lm material

deposited with chemical bath deposition technique. The parameters of defect

density model are optimized based on Levenberg-Marquardt algorithm to t

simulated and experimental results of TFTs. It is shown that the spatially uniform

density of defect states method used for trapped charge evaluation in Atlas

gives good agreement between simulated and experimental characteristics. An

important presence of deep (Gaussian) acceptor- and donor-like density of states

in poly-PbS band gap is conrmed. By controlling cation (donor-like) and anion

(acceptor-like) vacancies of poly-PbS lms could improved the performance of

p-type TFTs.


thin film transistor; simulation; density of states; optimization; defects; chemical bath deposition

Full Text:



Z. Meng, M. Wang, M. Wong, High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin lm transistors for system-on-panel applications, IEEE Transactions on Electron Devices

(2) (2000) 404-409. doi:10.1109/16.822287.

S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, P. K. T. Mok, Ultra-thin elevated channel poly-si TFT technology for fully-integrated AMLCD system on glass, IEEE Transactions on Electron Devices 47 (3) (2000) 569-575. doi:10. 1109/16.824731.

H. W. Zan, S. C. Kao, The eects of drain-bias on the threshold voltage instability in organic tfts, IEEE Electron Device Letters 29 (2) (2008) 155-157. doi:10.1109/LED.2007.914081

A. Obaid, M. Mahdi, Y. Yusof, M. Bououdina, Z. Hassan, Struc- tural and optical properties of nanocrystalline lead sulfide thin films prepared by microwave-assisted chemical bath deposition, Materi- als Science in Semiconductor Processing 16 (3) (2013) 971 – 979. doi:http://dx.doi.org/10.1016/j.mssp.2013.02.005.

URL http://www.sciencedirect.com/science/article/pii/ S1369800113000413

V. Stancu, M. Buda, L. Pintilie, I. Pintilie, T. Botila, G. Iordache, Investigation of metal-oxide semiconductor field-effect transistor-like si/sio2/(nano)crystalline pbs heterostructures, Thin Solid Films 516 (12) (2008) 4301 – 4306. doi:http://dx.doi.org/10.1016/j.tsf.2007.11. 116.

URL http://www.sciencedirect.com/science/article/pii/ S0040609007019682

G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd Edition, Kluwer Academic, 1995.

T. K. Chaudhuri, A solar thermophotovoltaic converter using pbs photo- voltaic cells, International Journal of Energy Research 16 (6) (1992) 481– 487. doi:10.1002/er.4440160605.

URL http://dx.doi.org/10.1002/er.4440160605

A. Carrillo-Castillo, A. Salas-Villasenor, I. Mejia, S. Aguirre- Tostado, B. Gnade, M. Quevedo-Lpez, P-type thin films tran- sistors with solution-deposited lead sulfide films as semiconduc- tor, Thin Solid Films 520 (7) (2012) 3107 – 3110. doi:http: //dx.doi.org/10.1016/j.tsf.2011.12.016.

URL http://www.sciencedirect.com/science/article/pii/ S0040609011021183

G. Fortunato, P. Migliorato, Determination of gap state density in polycrystalline silicon by fieldeffect conductance, Applied Physics Letters 49 (16) (1986) 1025–1027. doi:http://dx.doi.org/10.1063/1.97460. URL http://scitation.aip.org/content/aip/journal/apl/49/16/ 10.1063/1.97460

M. D. Jacunski, M. S. Shur, M. Hack, Threshold voltage, field effect mobil- ity, and gate-to-channel capacitance in polysilicon tfts, IEEE Transactions on Electron Devices 43 (9) (1996) 1433–1440. doi:10.1109/16.535329.

Y. Z. Xu, F. J. Clough, E. M. S. Narayanan, Y. Chen, W. I. Milne, Turn- on characteristics of polycrystalline silicon tft’s-impact of hydrogenation and channel length, IEEE Electron Device Letters 20 (2) (1999) 80–82. doi:10.1109/55.740658.

J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Opera- tions Research and Financial Engineering, Springer New York, 2006.

URL https://books.google.com.mx/books?id=eNlPAAAAMAAJ

Y. Liu, R. h. Yao, B. Li, W. L. Deng, An analytical model based on surface potential for a-si:h thin-film transistors, Journal of Display Technology 4 (2) (2008) 180–187. doi:10.1109/JDT.2007.907122.

M. Kimura, Evaluation of trap states at front and back oxide inter- faces and grain boundaries using electrical characteristic analysis and de- vice simulation of polycrystalline silicon thin-film transistors, Electronics and Communications in Japan (Part II: Electronics) 88 (2) (2005) 1–10. doi:10.1002/ecjb.20124.

URL http://dx.doi.org/10.1002/ecjb.20124

H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.-C. Wu, Mod- eling of amorphous ingazno4 thin film transistors and their sub- gap density of states, Applied Physics Letters 92 (13). doi:http: //dx.doi.org/10.1063/1.2857463.

URL http://scitation.aip.org/content/aip/journal/apl/92/13/ 10.1063/1.2857463

S. Ahmad, S. D. Mahanti, K. Hoang, M. G. Kanatzidis, Ab initio studies of the electronic structure of defects in pbte, Phys. Rev. B 74 (2006) 5205. doi:10.1103/PhysRevB.74.155205.

S. Sze, K. Ng, Physics of Semiconductor Devices, Wiley, 2006. URL https://books.google.es/books?id=o4unkmHBHb8C

S. Mahanti, K. Hoang, S. Ahmad, Deep defect states in narrow band-gap semiconductors, Physica B: Condensed Matter 401402 (2007) 291 – 295, proceedings of the 24th International Conference on Defects in Semicon- ductors. doi:http://dx.doi.org/10.1016/j.physb.2007.08.169.

URL http://www.sciencedirect.com/science/article/pii/ S0921452607007168

D. Zong-Ling, X. Huai-Zhong, X. Sheng-Lan, H. Yan, C. Xiao-Shuang, First-principles study of electronic properties in pbs( ̄100) with vacancy de- fect, Chinese Physics Letters 24 (11) (2007) 3218.

URL http://stacks.iop.org/0256-307X/24/i=11/a=054

A. L. Salas-Villasenor, I. Mejia, M. Sotelo-Lerma, Z. B. Guo, H. N. Al- shareef, M. A. Quevedo-Lopez, Improved electrical stability of cds thin film transistors through hydrogen-based thermal treatments, Semiconduc- tor Science and Technology 29 (8) (2014) 085001.

URL http://stacks.iop.org/0268-1242/29/i=8/a=085001


  • There are currently no refbacks.