Synthesis of Silicon Carbide Nanowhiskers by Microwave Heating: Effect of Heating Temperature

Chun Hong Voon


Silicon carbide (SiC) is an attractive material for its excellent properties such as wide band gap, high chemical stability and thermal conductivity. The conventional method for the preparation of SiC is Acheson process, a time and energy consuming process. In this article, demonstration of SiC nanowhiskers synthesis has been done by using microwave heating. Silica and graphite in the ratio 1:3 were mixed in ultrasonic bath, dried on hotplate and cold pressed uniaxially into a pellet die. The pellets were heated by using laboratory microwaves furnace at 1350ºC, 1400ºC and 1450ºC with heating rate of 20oC/min and soaked for 40 minutes. Different characterizations have been done to study the effect of heating temperature on the synthesis of SiC nanowhiskers. A temperature at 1400ºC is proved to be the most ideal for the synthesis of SiC nanowhiskers. β-SiC appeared as the only phase in the x-ray diffraction pattern of SiC nanowhiskers formed at 1400˚C with no traces of raw materials. Field emission scanning electron microscopy imaging confirmed the presence of only a negligible amount of graphite or silica in SiC nanowhiskers synthesized at 1400˚C. Further, Energy dispersive x-ray spectroscopy analysis revealed that only elemental C and Si were present in synthesized SiC nanowhiskers. Meanwhile, photoluminescence spectrum indicated the presence of single phase β-SiC peak at 440 nm which is associated with band gap of 2.8 eV. Single absorption bands of Si-C bond were detected at 803.5 cm-1 in fourier transform infrared analysis. SiCNWs produced in this study at 1400˚C has good thermal stability with 6% of weight loss, indicates its potentiality.


Microwave heating; Silicon carbide nanowhiskers; Synthesis; Graphite; Silica

Full Text:



Prakash, J., Venugopalan, R., Tripathi, B. M., Ghosh, S. K., Chakravartty, J. K., & Tyagi, A. K., Chemistry of one dimensional silicon carbide materials: Principle, production, application and future prospects, Progress in Solid State Chemistry, 43(3), 2015, pp. 98–122.

Yang, Y., Yang, K., Lin, Z. M., & Li, J. T.. Mechanical-activation-assisted combustion synthesis of SiC, Materials Letters, 61(3), 2007, pp. 671–676.

Elyassi, B., Kim, T. W., Sahimi, M., & Tsotsis, T. T., Effect of polystyrene on the morphology and physical properties of silicon carbide nanofibers. Materials Chemistry and Physics, 118(1), 2009, pp. 259–263.

Jin, H. B., Li, J. T., Cao, M. S., & Agathopoulos, S. Influence of mechanical activation on combustion synthesis of fine silicon carbide (SiC) powder. Powder Technology, 196(2), 2009, pp. 229–232.

Krzysztof Górecki, J. Z, The Influence of Diodes and Transistors Made of Silicon and Silicon Carbide on the Nonisothermal Characteristics of Boost Converters. Informacije MIDEM, 42(3), 2012, pp. 176–184.

Sviličić, B., Mastropaolo, E., & Cheung, R. (2013). Two-port piezoelectric silicon carbide MEMS cantilever resonator. Informacije MIDEM, 43(1), 2013, pp. 22–26.

Zhu, J., Wu, H., Chen, H. T., Wu, X. L., & Xiong, X. Tunable violet–blue emission from 3C-SiC nanowires. Physics Letters A, 373(18–19), 2009, pp. 1697–1700.

Li, B., Song, Y.-C., Zhang, C.-R., & Yu, J.-S. Synthesis and characterization of nanostructured silicon carbide crystal whiskers by sol–gel process and carbothermal reduction. Ceramics International, 40(8), 2014, pp. 12613–12616.

Raman, V., Bahl, O. P., & Dhawan, U. Synthesis of silicon carbide through the sol-gel process from different precursors. Journal of Materials Science, 30, 1995, pp. 2686–2693

Lin, M., Loh, K. P., Boothroyd, C., & Du, A. Y. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones. Applied Physics Letters, 85(22), 2004, pp. 5388–5390.

Agrawal, D. K. Microwave processing of ceramics. Current Opinion in Solid State and Materials Science, 3(5), 1998, pp. 480–485.

Mingos, D. M. P. Microwave syntheses of inorganic materials. Advanced Materials, 5(11), 1993, pp. 857–859.

Oghbaei, M., & Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494(1–2), 2010, pp. 175–189.

Rao, K. J., Vaidhyanathan, B., Ganguli, M., & Ramakrishnan, P. a. Synthesis of Inorganic Solids Using Microwaves. Chemistry of Materials, 11, 1999, pp. 882–895.

Millos, C. J., Gavin Whittaker, A., & Brechin, E. K. Microwave heating - A new synthetic tool for cluster synthesis. Polyhedron, 26(9–11), 2007, pp. 1927–1933.

Belmonte, T., Henrion, G., Cardoso, R. P., Noel, C., Arnoult, G., & Kosior, F. (2008). Microwave Plasmas at Atmospheric Pressure: New Theoretical Developments and Applications in Surface Science. Informacije MIDEM, 38(4), 2008, pp. 272–276.

Vesel, A., Mozetic, M., & Balat-Pichelin, M. (2011). Absorption of microwave power in nitrogen plasma at moderately low pressure. Informacije MIDEM, 41(1), 2011, pp. 18–21.

Kepenienė, V., Tamašiūnaitė, L. T., Ienė, J. J., Vaičiūnienė, J., Kondrotas, R., & As, V. P. Platinum-Niobium (V) Oxide / Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation. Materials Science, 22(2), 2016: pp 243–248.

Meng, F., Wang, X., Jiang, D., & Ma, R. Microwave Absorbing and Magnetic Properties of the Polyaniline-. Materials Science, 22(3), 2016: pp 354–357.

Zong, B., Wu, Y., Phuoc, N. N., Ho, P., Qiu, J., Yang, Y., … Han, G. Quick fabrication of appropriate morphology and composition CoFe films with desirable microwave properties. Int. J. Mater. Res, (110), pp. 1077–1085.

Xing, R., Guo, J., Miao, C., Liu, S., & Pan, H. Fabrication of protein-coated CdS nanocrystals via microwave-assisted hydrothermal method. Journal of Experimental Nanoscience, 9(6), 2014, pp. 582–587.

He, C. L., & Chen, Y. Q. Calorimetry Study of Microwave Absorption of Some Solid Materials. Journal of Microwave Power and Electromagnetic Energy, 47(4), 2013, pp. 251–261.

Kim, T., Lee, J., & Lee, K.-H. Microwave heating of carbon-based solid materials. Carbon letters, 15(1), 2014, pp. 15–24.

Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K., & Katsuyama, T. Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type. Japanese Journal of Applied Physics, 31(7R), 1992, pp. 2061.

Martin, A., Schopf, C., Pescaglini, A., O’Riordan, A., & Iacopino, D. Synthesis, optical properties and self-assembly of gold nanorods. Journal of Experimental Nanoscience, 7(6), 2012, pp. 688–702.

Fung, M. K., Ng, A. M. C., Djurišić, A. B., Chan, W. K., & Wang, H. Preparation of 8-hydroxyquinoline wires by decomposition of tris(8-hydroxyquinoline) aluminium. Journal of Experimental Nanoscience, 7(5), 2012, pp. 578–585.

Wang, Q., Li, Y., Jin, S., & Sang, S. Catalyst-free hybridization of silicon carbide whiskers and expanded graphite by vapor deposition method. Ceramics International, 41(10), 2015, pp. 14359–14366.

Li, J., Shirai, T., & Fuji, M. Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method. Advanced Powder Technology, 24(5), 2013, pp. 838–843.

Quah, H.-J., Cheong, K. Y., & Lockman, Z. Stimulation of silicon carbide nanotubes formation using different ratios of carbon nanotubes to silicon dioxide nanopowders. Journal of Alloys and Compounds, 475(1–2), 2008: pp 565–568.

Zhao, B., Zhang, H., Tao, H., Tan, Z., Jiao, Z., & Wu, M. Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction. Materials Letters, 65(11), 2011: pp 1552–1555.

Rajarao, R., Ferreira, R., Sadi, S. H. F., Khanna, R., & Sahajwalla, V. Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source. Materials Letters, 120, 2014: pp 65–68.

Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 2000: pp 10815–10837.

Chiu, S.-C., & Li, Y.-Y. SiC nanowires in large quantities: Synthesis, band gap characterization, and photoluminescence properties. Journal of Crystal Growth, 311(4), 2009: pp 1036–1041.

Li, Y., Chen, C., Li, J.-T., Yang, Y., & Lin, Z.-M. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals. Nanoscale research letters, 6(1), 2011: pp 454.

y. Verd Francisco Arredondo. Cerámica y vidrio, 279(c), 1969: pp 279–284

RenbingWu, LinglingWu, Guangyi Yang, Yi Pan, Jianjun Chen, R. Z. and J. L. Fabrication and photoluminescence of bicrystalline SiC nanobelts. Journal of Physics D: Applied Physics, 40(12), 2007: pp 3697.

Nandawar, R., Purnima, S., & Fozia, Z. H. Synthesis and characterization of SiO2 nanoparticles by sol-gel process. Indian Journal of Science, 1(1), 2012: pp 6–10.

Corriu, R. J. P., Gerbier, P., Guérin, C., & Henner, B. Poly[(silylene)diacetylene]/fine metal oxide powder dispersions: use as precursors to silicon-based composite ceramics. Journal of Materials Chemistry, 10(9), 2000: pp 2173–2182.

Menéndez, J. a, Abdul Rahman, R., Arenillas, B. F., Y. Fernández, L. Z., E.G.Calvo, & J.M.Bermúdez. Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 2010, pp. 1–8.

Stuerga, D. Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes. In Microwaves in Organic Synthesis (Vol. 1, pp. 1–61). 2008, pp. Weinheim, Germany: Wiley-VCH Verlag GmbH.

Li, X., Zhang, G., Tang, K., Ostrovski, O., & Tronstad, R. synthesis of silicon carbide by carbothermal reduction of quartz in h 2 -ar gas mixtures, 2015, pp. 548–554.

Li, X., Zhang, G., Tang, K., Ostrovski, O., & Tronstad, R. Carbothermal Reduction of Quartz in Different Gas Atmospheres. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 46(3), 2015, pp. 1343–1352.

Cetinkaya, S., & Eroglu, S. Chemical vapor deposition of C on SiO2 and subsequent carbothermal reduction for the synthesis of nanocrystalline SiC particles/whiskers. Journal of the European Ceramic Society, 31(5), 2011, pp. 869–876.

Fu, Q.-G., Li, H.-J., Shi, X.-H., Li, K.-Z., Wei, J., & Hu, Z.-B. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst. Materials Chemistry and Physics, 100(1), 2006, pp. 108–111.

Dehghanzadeh, M., Ataie & Heshmati-Manesh, S. synthesis of nanosize silicon carbide powder by carbothermal reduction of sio2. International Journal of Modern Physics: Conference Series, 5, 2012, pp. 263–269.

Weimer, A. W., Nilsen, K. J., Cochran, G. A., & Roach, R. P. Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE Journal, 39(3), 1991, pp. 493–503.

Lee, J. G., Miller, P. D., & Cutler, I. B. carbothermal reduction of silica Department of Materials Science and Engineering University of Utah, Salt Lake City, Utah 84112 (U.S.A.), 84112(1), pp. 707–711.

Changhong, D., Xianpeng, Z., Jinsong, Z., Yongjin, Y., Lihua, C., & Fei, X. The synthesis of ultrafine SiC powder by the microwave heating technique. Journal of Materials Science, 32(9), 1997, pp. 2469–2472.

Dijen, F. K. Van. The Chemistry of the Carbothermal Synthesis of / 3-SIC : Reaction Mechanism , Reaction Rate and Grain Growth, 7(199 l), 1991, pp. 177–184.

Kavitha, N., Balasubramanian, M., & Vashistha, Y. D. Synthesis and Characterization of Nano Silicon Carbide Powder from Agricultural Waste. Transactions of the Indian Ceramic Society, 70(3), 2011, pp. 115–118.

Li, Y., Wang, Q., Fan, H., Sang, S., Li, Y., & Zhao, L. Synthesis of silicon carbide whiskers using reactive graphite as template. Ceramics International, 40(1), 2014, pp. 1481–1488.


  • There are currently no refbacks.

Copyright (c) 2017 Informacije MIDEM