Simulation on interfacial singular stress-strain induced cracking of microelectronic chip under power on-off cycles

xiaoguang huang


Thermal fatigue failure of a microelectronic chip usually initiates from the interface between solder joint and substrate for the mismatch in coefficient of thermal expansion (CTE). Because of the viscoelastic creep properties of the solder, the interfacial stress-strain are, strongly, temperature and time dependent. Based on the established constitutive models of solder materials, the three-dimensional FEM analysis of the microelectronic chip undergoing power on-off thermal cycles is carried out. The time dependent stress-strain singular fields at the solder/substance interface are obtained, and the singular field parameters are quantitatively evaluated. Furthermore, the crack nucleation behavior of thermal fatigue failure are tested to verify the conclusion that singular stress-strain promote thermal fatigue failure from the solder/substance interface.


Thermal fatigue, electronic chip, creep, singular field, crack nucleation

Full Text:



QS Zhu, F Gao, HC Ma, ZQ Liu, JD Guo, L Zhang. Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current. Journal of Materials Science: Materials in Electronics, 2018, 29(6): 5025-5033.DOI: 10.1007/s10854-017-8464-3

P Yang, W Li. Numerical analysis on thermal characteristics for chip scale package by integrating 2D/3D models. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2009, 22: 43-55. DOI: 10.1002/jnm.694

MY Xiong, L Zhang. Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J Mater Sci, 2019, 54: 1741-1768. DOI: 10.1007/s10854-017-8464-3. DOI: 10.1007/s10853-018-2907-y

AT Tan, AW Tan, F Yusof. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions. Sci Technol Adv Mater, 2015, 16(3): 033505. DOI: 10.1088/1468-6996/16/3/033505

T Xu, XW Hu, YL Li, XX Jiang. The growth behavior of interfacial intermetallic compound between Sn-3.5Ag-0.5 Cu solder and Cu substrate under different thermal-aged conditions. J Mater Sci: Mater Electron, 2017, 28(24):18515-18528. DOI: 10.1007/s10854-017-7799-0

M Yang, M Li, J Kim. Texture evolution and its effects on growth of intermetallic compounds formed at eutectic Sn37Pb/Cu interface during solid-state aging. Intermetallics, 2012, 31:177-185. DOI: 10.1016/j.intermet.2012.07.004

M Erinc, PJG Schreurs, MGD Geers. Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. International Journal of Solids and Structures, 2007, 44: 5680-5694. DOI: 10.1016/j.ijsolstr.2007.01.021

SP Zhu, HZ Huang, LP He, Y Liu, ZL Wang. A generalized energy-based fatigue-creep damage parameters for life prediction of turbine disk alloys. Engineering Fracture Mechanics, 2012, 90: 89-100. DOI: 10.1016/j.engfracmech.2012.04.021

AR Akisanya, CS Meng. Initiation of fracture at the interface corner of bi-material joints. Journal of the Mechanics and Physics of Solids, 2003, 51: 27-46. DOI: 10.1016/S0022-5096(02)00076-5

HR Ghorbani, JK Spelt. Analytical elasto-creep model of interfacial thermal stresses and strains in trilayer assemblies. International Journal of Solids and Structures, 2006, 43: 7424-7449. DOI: 10.1016/j.ijsolstr.2006.02.003

SS Pageau, PF Joseph, SB Biggers. Finite element analysis of anisotropic materials with singular inplane stress fields. International Journal of Solids and Structures, 1995, 32(5): 571-591. DOI: 10.1016/0020-7683(94)00152-m

DH Chen, K Ushijima. Plastic stress singularity near the tip of a V-notch. International Journal of Fracture, 2000, 106: 117-134. DOI: 10.1023/a:1007693716844

T Hattori, S Sakata, G Murakami. A stress singularity parameter approach for evaluating the interfacial reliability of plastic encapsulated LSI devices. ASME J. Electron. Packag., 1989, 111: 243-248.

PA Gradin. A fracture criterion for edge-bonded bimaterial bodies. J. Compos. Mater., 1982,16: 448-456. DOI: 10.1177/002199838201600601

HL Groth. Stress singularities and fracture at interface corners in bonded joints. Int. J. Adhesion Adhesives, 1988, 8: 107-113. DOI: 10.1016/0143-7496(88)90031-0

ED Reedy Jr, TR Guess. Comparison of butt tensile strength data with interface corner stress intensity factor prediction. International Journal of Solids and Structures, 1993, 30(21): 2929-2936. DOI: 10.1016/0020-7683(93)90204-k

S Wiese, E Meusel. Characterization of lead-free solders in flip chip joints. Journal of Electronic Packaging, 2003, 125(4): 531-38. DOI: 10.1115/1.1604155

JW Kim, DG Kim, SB Jung. Evaluation of displacement rate effect in shear test of Sn-3Ag-0.5Cu solder bump for flip chip application. Microelectronics and reliability, 2006, 46: 535-542. DOI: 10.1016/j.microrel.2005.06.008

JH Liu, XQ Meng, JQ Xu. Creep constitutive relationship and cyclic behavior of Sn96.5Ag3Cu0.5 under high temperature. International Journal of Modern Physics B, 2008, 22(2): 5438-5444. DOI: 10.1142/S0217979208050620

H Koguchi, N Suzuki. Singular stress fields in anisotropic bonded joints considering interface stress and interface elasticity. Journal of Applied Mechanics, 2014, 81(7): 1003-1012. DOI: 10.1115/1.4026840



  • There are currently no refbacks.

Copyright (c) 2015 Informacije MIDEM

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.