DTMOS Based High Bandwidth Four-Quadrant Analog Multiplier

Muhammed Emin Başak, Emre Özer, Fırat Kaçar, Deniz OZENLI


Analog multiplication circuits are very important block structures which are widely used in analog signal applications. In analog multiplication circuits, low power consumption is expected with wide bandwidth, low nonlinearity and high input range according to supply voltage. In this study, folded Gilbert cell structure was resized using dynamic threshold MOS (DTMOS) transistors and low power consumption and high bandwidth have been obtained. In improver, the bandwidth was obtained at values of 3.63 GHz, temperature variation, total harmonic distortion and intermodulation products of the proposed multiplier were examined. Monte Carlo analysis was performed and error analysis of the dimensioning of the circuit was examined. In summation to the high bandwidth, a low power consumption of 44.5 µW has been achieved and the supply voltage of 0.2 V has been achieved to operate in full-scale input range.


Four-quadrant; analog multiplier; DTMOS.

Full Text:



S. Menekay, R. C. Tarcan, and H. Kuntman, “Novel high-precision current-mode multiplier/divider,” Analog Integr. Circuits Signal Process., vol. 60, no. 3, pp. 237–248, 2009.

J. M. Algueta Miguel, C. a. De La Cruz Blas, and A. J. Lopez-Martin, “Fully Differential Current-Mode CMOS Triode Translinear Multiplier,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 58, no. 1, pp. 21–25, Jan. 2011.

I. M. Filanovsky and H. Baltes, “CMOS two-quadrant multiplier using transistor triode regime,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 831–833, May 1992.

E. Yuce and F. Yucel, “A new cascadable CMOS voltage squarer circuit and its application: Four-quadrant analog multiplier,” Indian J. Eng. Mater. Sci., vol. 21, no. 4, pp. 351–357, 2014.

S. Keleş and H. H. Kuntman, “Four quadrant FGMOS analog multiplier,” Turkish J. Electr. Eng. Comput. Sci., vol. 19, no. 2, pp. 291–301, 2011.

F. Yucel and E. Yuce, “Analog Squarers Using only Seven MOS Transistors and a Four Quadrant Analog Multiplier Application,” J. Circuits, Syst. Comput., vol. 27, no. 5, pp. 1–9, 2018.

M. A. Hashiesh, S. A. Mahmoud, and A. M. Soliman, “New four-quadrant CMOS current-mode and voltage-mode multipliers,” Analog Integr. Circuits Signal Process., vol. 45, no. 3, pp. 295–307, 2005.

A. Alikhani and A. Ahmadi, “A novel current-mode four-quadrant CMOS analog multiplier/divider,” AEU - Int. J. Electron. Commun., vol. 66, no. 7, pp. 581–586, 2012.

I. Aloui, N. Hassen, and K. Besbes, “A CMOS current mode four quadrant analog multiplier free from mobility reduction,” AEU - Int. J. Electron. Commun., vol. 82, pp. 119–126, Dec. 2017.

B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. 3, no. 4, pp. 365–373, Dec. 1968.

A. Panigrahi and P. K. Paul, “A novel bulk-input low voltage and low power four quadrant analog multiplier in weak inversion,” Analog Integr. Circuits Signal Process., vol. 75, no. 2, pp. 237–243, 2013.

S. Soltany and A. Rezai, “A novel low power and low voltage bulk-input four-quadrant analog multiplier in voltage mode,” Int. J. Multimed. Ubiquitous Eng., vol. 11, no. 1, pp. 159–168, 2016.

S. Menekay, R. C. Tarcan, and H. Kuntman, “Novel high-precision current-mode circuits based on the MOS-translinear principle,” AEU - Int. J. Electron. Commun., vol. 63, no. 11, pp. 992–997, 2009.

M. A. Al-Absi and I. A. As-Sabban, “A New Highly Accurate CMOS Current-Mode Four-Quadrant Multiplier,” Arab. J. Sci. Eng., vol. 40, no. 2, pp. 551–558, 2015.

A. N. Saatlo and I. S. Özoǧuz, “Design of a high-linear, high-precision analog multiplier, free from body effect,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp. 820–832, 2016.

C. Abel, S. Sakurai, F. Larsen, and M. Ismail, “Christopher Abel, Satoshi Sakurai, Frode Larsen, and Mohammed Ismail Department of Electrical Engineering The Ohio State University 2015 Neil Avenue, Columbus, OH 43210,” Electr. Eng., no. 3, pp. 273–276, 2015.

E. Ibaragi, A. Hyogo, and K. Sekine, “A CMOS analog multiplier free from mobility reduction and body effect,” Analog Integr. Circuits Signal Process., vol. 25, no. 3, pp. 281–290, 2000.

C.-C. Chang and S.-I. Liu, “Weak inversion four-quadrant multiplier and two-quadrant divider,” Electron. Lett., vol. 34, no. 22, p. 2079, 1998.

A. G. Andreou and K. A. Boahen, “Translinear circuits in subthreshold MOS,” Analog Integr. Circuits Signal Process., vol. 9, no. 2, pp. 141–166, Mar. 1996.

D. Coué and G. Wilson, “A four-quadrant subthreshold mode multiplier for analog neural-network applications,” IEEE Trans. Neural Networks, vol. 7, no. 5, pp. 1212–1219, 1996.

M. Gravati, M. Valle, G. Ferri, N. Guerrini, and L. Reyes, “A novel current-mode very low power analog cmos four quadrant multiplier,” Proc. 31st Eur. Solid-State Circuits Conf. 2005. ESSCIRC 2005., no. 1, pp. 495–498, 2005.

P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 3th ed. New York, USA: Oxford University Press, 2012.

G. Zamora-Mejia, A. Diaz-Armendariz, H. Santiago-Ramirez, J. M. Rocha-Perez, C. A. Gracios-Marin, and A. Diaz-Sanchez, “Gate and Bulk-Driven Four-Quadrant CMOS Analog Multiplier,” Circuits, Syst. Signal Process., vol. 38, no. 4, pp. 1547–1560, 2019.

Y. Babacan, “Ultra-low voltage and low-power voltage-mode DTMOS-based four-quadrant analog multiplier,” Analog Integr. Circuits Signal Process., vol. 99, no. 1, pp. 39–45, 2019.

J. De La Cruz-Alejo, A. S. Medina-Vazquez, and L. N. Oliva-Moreno, “FGMOS four-quadrant analog multiplier,” CCE 2012 - 2012 9th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control, 2012.

M. Gupta, R. Srivastava, and U. Singh, “Low Voltage Floating Gate MOS Transistor Based Differential Voltage Squarer,” ISRN Electron., vol. 2014, pp. 1–6, 2014.

F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, and C. Hu, “A dynamic threshold voltage MOSFET (DTMOS) for very low voltage operation,” IEEE Electron Device Lett., vol. 15, no. 12, pp. 510–512, 1994.

A. Ebrahimi, H. M. Naimi, and M. Gholami, “Compact, low-voltage, low-power and high-bandwidth CMOS four-quadrant analog multiplier,” 2010 11th Int. Work. Symb. Numer. Methods, Model. Appl. to Circuit Des. SM2ACD 2010, no. 6, pp. 1–5, 2010.

S. C. Li, “A Symmetric Complementary Structure for RF CMOS Analog Squarer and Four-Quadrant Analog Multiplier,” Analog Integr Circ Sig Process, vol. 23, pp. 103–115, 2000.

B. Boonchu and W. Surakampontorn, “CMOS voltage-mode analog multiplier,” in 2006 IEEE International Symposium on Circuits and Systems, 2006, vol. 1, no. 5, p. 4.

W. Liu and S. I. Liu, “Design of a CMOS low-power and low-voltage four-quadrant analog multiplier,” Analog Integr. Circuits Signal Process., vol. 63, no. 2, pp. 307–312, 2010.

A. Amiri and A. N. Saatlo, “Voltage mode implementation of highly accurate analog multiplier circuit,” ICEE 2015 - Proc. 23rd Iran. Conf. Electr. Eng., vol. 10, pp. 1059–1062, 2015.

V. Niranjan and M. Gupta, “Low voltage four‐quadrant analog multiplier using dynamic threshold MOS transistors,” Microelectron. Int., vol. 26, no. 1, pp. 47–52, Jan. 2009.

DOI: https://doi.org/10.33180/InfMIDEM2020.206


  • There are currently no refbacks.

Copyright (c) 2020 Muhammed Emin Başak, Emre Özer, Fırat Kaçar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.