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Abstract:  Ternary Content Addressable Memories [TCAM] based on Field Programmable Gate Arrays [FPGA] are widely used in 

artificial intelligence [AI] and networking applications. TCAM macros are unavailable within the FPGA; therefore, they must be 

emulated using SRAM-based memories, which require FPGA resources. Compared to state-of-the-art designs, the proposed FPGA-

based TCAM implementation will save significant resources. This methodology makes use of the Lookup Table RAMS (LUTRAMs), slice 

carry-chains, and flip-flops (FF) allowing simultaneous mapping of rules and deeper pipelining respectively. The TCAM implementation 

results in lower power consumption, fewer delays and lower resource utilization. It outperforms conventional FPGA-based TCAMs 

in terms of energy efficiency (EE) and performance per area (PA) by at least 3.34 and 8.4 times respectively, and 56% better than 

existing FPGA designs. The proposed method outperforms all previous approaches due to its low dynamic power consumption when 

considering the huge size of TCAM emulation on SRAM-based FPGAs.
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Energetsko učinkovit TCAM na FPGA z nizko 
dinamično porabo energije 
Izvleček: Ternarni vsebinsko naslovljivi pomnilniki [TCAM], ki temeljijo na poljskih programirljivih matrikah [FPGA], se pogosto 

uporabljajo v aplikacijah umetne inteligence [AI] in omrežnih aplikacijah. Makroji TCAM niso na voljo v FPGA, zato jih je treba emulirati 

s pomnilniki na osnovi SRAM, ki zahtevajo vire FPGA. V primerjavi z najsodobnejšimi zasnovami bo predlagana implementacija TCAM 

na osnovi FPGA prihranila precej virov. Ta metodologija uporablja pomnilnike RAM s preglednicami za iskanje (LUTRAM), prenosne 

verige in flip-flope (FF), ki omogočajo hkratno preslikavo pravil oziroma poglobljeno vodenje. Izvedba TCAM omogoča manjšo porabo 

energije, manjše zakasnitve in manjšo izkoriščenost virov. V smislu energetske učinkovitosti (EE) in zmogljivosti na površino (PA) 

presega običajne TCAM-e na osnovi FPGA za vsaj 3,34- oziroma 8,4-krat in je za 56 % boljša od obstoječih zasnov FPGA. Predlagana 

metoda presega vse prejšnje pristope zaradi nizke dinamične porabe energije ob upoštevanju ogromne velikosti emulacije TCAM na 

FPGA na osnovi SRAM
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1 Introduction

Artificial intelligence (AI) is speeding up and becom-
ing more accurate and reliable. The centralized server 
is used to connect applications from the edge to the 
cloud. Due to the rapid growth of internet-connected 
devices and an increase in internet traffic, today’s sys-
tems require very fast searches. For IP routing and In-
ternet Protocol (IP) forwarding, routers are key com-
ponents of networking equipment. Routers receive a 
packet of data and decide where to route it. They must 
provide fast packet routing by searching through large 
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amounts of data. High-speed searches are also required 
in CPUs, database engines, and neural networks.

The latest Xilinx and Intel FPGA chips are increasingly 
being used as data plane accelerators for Software 
Defined Networking (SDN) [1]. The FPGA industry con-
tinually launches software development toolkits to 
process and classify packets quickly and efficiently [2]. 
Ethernet/IP forwarding, firewalls, and QoS (Quality of 
Service) require packet processing and classification. 
There are three types of matching techniques used in 
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classification. They are Longest Prefix Matching (LPM) 
[3], Matching with Wildcards [4], and Exact Matching 
(EM) [5]. Matching with wildcards is the most challeng-
ing task.

Switching, Routing, QoS tables and Access Control List 
(ACL) are all stored in a high-speed memory to allow 
for forwarding decisions and limits. These memories 
(lookups) contain information about results, such as 
whether a packet with a particular destination IP ad-
dress should be dropped according to an ACL. Cisco 
Catalyst switches use specialized memory architec-
tures, called CAMs and TCAMs, to store these memory 
tables.

2 Related works

Content Addressable Memories (CAM) [6] deal only 
with the binary digits (0’s and 1’s), whereas the Ternary 
Content Addressable Memories (TCAM) deal with (0’s, 
1’s, and x), where “x” represents Don’t care. TCAMs are 
not available inside the FPGAs as they must be emu-
lated using memory and logic resources and this leads 
to a significant resource overhead. Researchers have 
consequently been working on reducing the resource 
consumption of FPGA-based TCAMs. TCAMs are made 
up of three basic parts: storage memory, a priority en-
coder, and match logic. A major cost component of FP-
GAs based on SRAM is their storage memories, which 
comprise the actual TCAM contents to be searched. 
Bosshart et al. [7] optimize the storage memory needs 
of TCAMs by combining dual-output LUTs and partial 
reconfiguration. This saves many storage memory re-
sources. 

Match logic generates a flag for each incoming key, 
and this consumes a significant amount of resources 
because it must be done simultaneously for all mem-
ory locations at high speed. Ullah et al. [8] propose a 
novel idea for efficiently mapping the matching logic 
in Xilinx FPGAs by exploiting the built-in carry-chain 
resources. As the size of the key and rules to be stored 
in the TCAM increases, the storage and matching logic 
requirements increase as well. As a result, it is worth 
looking into optimizing both storage and matching 
logic resources at the same time.

TCAM emulation on SRAM-based FPGAs has been 
examined using four types of resources: block RAMs 
(BRAMs), LUT RAMs (LUTRAMs), lookup tables (LUTs), 
and flip-flops (FFs). Slice FFs is used as TCAM storage 
memory in FF-based TCAMs [9] – [12]. Because each 
FF holds a single bit of data and the architectural limi-
tations require the use of a LUT–FF pair, many of the 

LUTs will be used as pass-through, wasting resources.  
Researchers [13], [14], and [15–21] have extensively 
investigated BRAM-based TCAM emulation using 
SRAM-based FPGA. However, the efficient use of BRAM 
for TCAM emulation is restricted by theoretical limits, 
which require at least an SRAM/TCAM bit ratio of 29/9 
and, when contrasted to LUTRAM or LUTs based TCAMs, 
which requires 26/6 [22], or 5 × more.

Reviriego et al. [23] used 5 × 2 LUTs to emulate TCAMs 
as well as modern SRAM-based FPGAs with their recon-
figuration capabilities for storing and updating TCAM 
rules. Compared to PR-TCAM [23], BPR-TCAM [8] uses 
a slice built-in carry-chain to reduce matching logic in 
TCAMs. Both approaches rely on partial reconfigura-
tion for updating TCAM stored rules. Another resource 
for TCAM-emulation, in addition to LUTRAM, is distrib-
uted RAM [22], [24], [25]. Ullah et al. [21] used distrib-
uted RAMs in a 6 × 1 configuration for resource allo-
cation in the same slice to obtain greater performance 
per area (PA), in addition to using carry chains for the 
match-logic reduction.

The D-TCAM [26] structure uses LUTRAMs on a 6 × 1 
Xilinx template to store TCAMs and pipeline fine-
grain by using its built-in slice register to gain higher 
throughput (TP). The previous work using the LUTRAMS 
in the 5 x 2 configuration and all of the FFs in the SLI-
CEM were used to improve the throughput and perfor-
mance per area. 

To implement broader TCAM words, the partial match 
results must be transferred from the current slice’s carry 
chain to the next slice’s carry chain [24]. By utilizing the 
TCAM ANDing logic in the carry-chain, it is possible to 
achieve the desired TCAM bit density while saving a sig-
nificant amount of LUT resources. It increases area per-
formance by at least 67 percent and energy efficiency 
by at least 2.5 times. Frac-TCAM [27] utilizes RAM32M 
to construct the 8 × 5 TCAM compared to 4 × 6 TCAM 
used in DURE, thus almost doubling the utilization den-
sity. Moreover, LUTRAM outputs can be pipelined via 
in-slice registers. In comparison to existing approaches, 
logic utilization and TP can be enhanced, resulting in 
improved PAs.

By combining BRAM and LUTRAM, Comp-TCAM [28] 
can implement the TCAM architecture regardless of 
the type of memory and can be adapted to meet the 
system requirements. A decrease of 41.6% in hardware 
resource utilisation has no effect on the functionality.

In this paper, a TCAM emulation on Xilinx SRAM-based 
FPGAs to achieve a storage reduction in LUTRAMs and 
a match reduction in logic resources is presented. To ac-
celerate the arithmetic operations, the match bits from 
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the distributed RAMs are efficiently AND-cascaded us-
ing the FPGA’s built-in carry chains. Ullah et al. [8] used 
only one built-in carry-logic for matching one of the 
rules. The proposed work used only one built-in carry 
logic for matching two of the rules (i.e)., dual-output 
LUTs are connected to the two built-in carry logic com-
pared to LH-CAM [10]. It is capable of mapping a single 
output LUTRAM matching logic. This makes the delay 
time shorter and the design clock rate faster because it 
doesn’t use any logic or routing resources.

The main contributions of the paper are listed below:
1.  An FPGA resource-saving TCAM emulation scheme 

has been proposed that signifi cantly reduces the 
resources needed to emulate an individual TCAM.

2.  The mapping of two rules using dual-output 
LUTs and then using the built-in carry-chain to 
implement the match logic. Thus, additional 
logic or routing resources are not required for the 
matching logic. This reduces the delay time and 
achieves a high clock speed.

3.  TCAM is designed to be scalable in terms of 
lookup rate, power consumption, device utiliza-
tion, and energy-effi  ciency.

3 Proposed TCAM architecture

Consider the TCAM emulation on SRAM-based FPGAs. 
For example, N = 4 and W = 4, i.e., a 4 × 4 TCAM, where 
W denotes the key size or width, and depth is denoted 
by N. The key size is 4, and each 4 × 1 SRAM has two 
input address lines. The TCAM can be divided into two 
blocks, as shown in Fig.1 and each of the four rules r0, 
r1, r2, and r3 is mapped to a 4 × 1 SRAM. The top block 
is indexed by b0 and b1, whereas the bottom block is 
indexed by b2 and b3. The outputs of the SRAM are 
combined using AND gates known as match logic. The 
choice of SRAM implementation primitives, as well as 
its width and depth extension, is essential to the effi-
cient TCAM designs on FPGA.

Figure 1: TCAM emulation using SRAMs.

The proposed TCAM makes use of the distributed LU-
TRAM and carry-chain logic present in the SLICEM of 
Xilinx FPGAs. Consider a 2 × 5 LUT and carry chain as 
shown in Fig. 2, which has a key width of five and two 
rules, i.e., O5 and O6.

Figure 2: An architecture for mapping a LUT to a carry 
chain

Figure 3: A 1 × 20 TCAM was mapped to from 5 × 2 LUTs
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Two rules (Rule 6 and Rule 7) are read from O5 and O6 
as the keyword and connected to the 5-bit LUT input 
(A4:A0). Rule 6 is stored in memory M1, and Rule 7 is 
stored in memory M2. The rules are updated using the 
write address inputs as shown in Fig. 2. This LUT output 
is connected to the built-in carry-chain for implement-
ing the match logic. Note that this is worth mentioning 
as the proposed TCAM utilized the one carry-chain to 
reduce the routing resources and extra logic needed, 
resulting in a higher design clock rate and less delay 
time.

To implement 1×20 TCAM as shown in Fig.3, LUTs (LUTA, 
LUTB, LUTC, and LUTD) are stacked with different key-
words [19:0] and have eight different rules through O5 
and O6. These eight rules are connected to the single 
carry chain logics i.e., LUT output O6 is connected to 
the select line of carry-chain logic, and the LUT output 
O5 is connected to the input of the same carry-chain 
logic. With the proposed TCAM, six input LUTs in a du-
al-output mode are combined with eight flip-flops as 
well as the carry chain in a single slice to provide an 8 
× 5 configuration (compared to 4 × 6 for single output 
LUTs). As shown in Fig. 2, O5 is connected to the se-
lect signal of the carry chain through D5FFMUX, D5FF, 
DOUTMUX and LUT output O6 is connected to the data 
inputs of the carry chain via DCY0, MUXCY, D5FFMUX 
and D5FF. In this manner, a fully pipelined TCAM struc-
ture is designed, resulting in improved performance 
such as TP and EDP, while resource utilization is the 
same as in a non-pipelined structure. 

TCAMs with large dimensions can combine multiple 
basic blocks. To increase the depth of a TCAM, more 
basic blocks have to be stacked vertically, where each 
basic block implements a 1 × 20 TCAM. All the basic 
blocks have the same keyword. As shown in Fig. 4(c), 
TCAM’s width can also be extended by configuring 
multiple basic blocks with the same depth simultane-
ously to produce the final match signals.

Fig. 5 shows the proposed TCAM update logic (high-
lighted in blue dots). The Write Enable “WE” line is short 
and connected to all the LUTRAM blocks. In the cur-
rent write cycle, “WE” lines are demultiplexed with the 
row ID to determine which row needs to be updated. 
For columns with the same key lines, column update 
logic takes care of blocks in the same column. Serial 
shift registers are implemented as SRL32 in SLICEM 
for column update logic. For the depth varying from 
64 to 1024 × 20 columns, only 32 SRL32 is required for 
implementation. Similarly, for the depth varying from 
64 to 1024 × 40 columns, only 64 SRL32 is required for 
implementation. It is noted that, when the key size is 
increased from 20 to 40, the SRL32 utilization is dou-
bled. An incoming key value is compared with the 5-bit 

(a) (b)

(c)

Figure 4: a Architecture of Basic Block combining four 
LUTs and carry chain into 1 × 20 TCAM; b Depth Exten-
sion; c Width  Extension

global counter and the binary value is written into the 
SRL32. A 3-bit counter is present inside the SRL fill logic 
that controls the demultiplexer, and it increments once 
every 33 times the global 5-bit counter.

4 Results and discussion

The Xilinx Virtex-7, 28-nm, XC7V2000TFHG1761-2L 
FPGA device is used to implement the proposed TCAM 
architecture with a −2 speed grade. There are 1,221,600 
LUTs, 344,800 LUTRAMs, 2,443,200 FFs, and 305,400 
SLICEs on this device. Performance evaluations of dif-
ferent TCAM sizes are also done using the Vivado HLx 
2017.3 design suite. TCAM has a key size of 20 to 160 
bits and several rules ranging from 64 to 1024 bits. A 
SLICE capable of implementing an 8 × 5 TCAM is the 
fundamental building block. As a result, keys multiply 
by 5 and rules multiply by 8. The results are based on 
the implementation of post-place and post-route.
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TCAM storage and update logic resources are required 
for different configurations, that is, 512 × 20, 512 × 40, 
512 × 80, 512 × 160, and 1024 × 160 as mentioned in 
Table 1. The table shows that the storage part of TCAMs 
uses a lot more resources than the update logic.

Table 1: Resource Utilization for the proposed TCAM

TCAM Size( D x W) 512 × 20 512 × 40 512 × 80 512 × 160 1024 × 160
TCAM LUT as logic 0

LUT RAM 1024 2048 4096 8192 16384
FFs 2048 4096 8192 16384 32768

Update Logic LUT as logic 84 104 144 224 382
LUT RAM 32 64 128 256 256
FFs 23 23 23 23 23

Resources utilized for the different TCAM sizes are listed 
in Table 2, which does not contain a priority encoder 
or match reduction. The proposed TCAM architecture 
only utilizes three FPGA resources: LUTRAMs for stor-
ing TCAM rules, FFs registers for deeper pipelining, and 
slice carry chain for match logic. It is important to note 
that no logic LUTs are needed to implement AND gates 
since the rules are linked to LUT Carry-chains. Resource 
utilization can be observed to be directly related to the 
TCAM’s size. It should be noted that the LUT as logic for 

the entire TCAM will be zero since Match logic can be 
implemented with the help of the LUT carry chain. As 
an example, the 64 × 20 TCAM requires 128 LUTRAMs 
and 256 FF for pipelining, in addition to 32 CARRY4 
for data transfer. In the proposed TCAM, FFs and carry 
chains are used within the same SLICE. FFs are utilized 
by multiplying the number of blocks by the depth of 

Figure 5: Architecture of the proposed TCAM with update logic.

TCAM. The Virtex-7 FPGA from Xilinx can support eight 
FFs within a single SLICE. To maximize the utilization of 
SLICE resources, the proposed TCAM fully exploits the 
FF available in the SLICE. With this approach, a pipe-
lined TCAM architecture can be implemented without 
the use of additional SLICEs.

S. R. S. Vadivel et al.; Informacije Midem, Vol. 52, No. 3(2022), 181 – 189
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Table 2: Resource Utilization for different Configura-
tions of proposed TCAM

Width Parameters
Depth

64 128 256 512

20

LUT RAM 128 256 512 1024
FFs 256 512 1024 2048

Speed(MHz) 888.4 872.8 815.5 752.6
Power(mW) 4 9 18 34

40

LUT RAM 256 512 1024 2048
FFs 512 1024 2048 4096

Speed(MHz) 685.6 680.2 662.5 597.8
Power(mW) 9 18 34 60

80

LUT RAM 512 1024 2048 4096
FFs 1024 2048 4096 8192

Speed(MHz) 642 628 607 584
Power(mW) 18 34 60 109

160

LUT RAM 1024 2048 4096 8192
FFs 2048 4096 8192 16384

Speed(MHz) 567.8 532.8 395.4 372.5
Power(mW) 34 60 109 122

The speed and dynamic power consumption achieved 
by the proposed TCAMs shown in Table 2 for the dif-
ferent TCAM configurations. The TCAM inserts registers 
between the input and the TCAM module, as well as 
between the TCAM module and the reduction logic. 
The proposed TCAM achieves speeds from 372 to 888 
MHz for different sizes. However, the proposed TCAM 
degrades minimally as its size increases, and the deg-
radation does not double as the TCAM’s size increases. 
For example, when moving from 64 × 20 to 128 × 20 
and from 64 × 160 to 128 × 160, the speed decreases by 
15.16 and 35MHz respectively. Similarly, when moving 
from 64 × 20 to 64 × 40 and from 64 × 80 to 64 × 160, 
the speed decreases by 202 and 75.1 MHz respective-
ly. In Table 2, TCAMs proposed in this paper scale well 
with size, when analysing FPGA resource utilization 
and clock speed. Vivado’s power analyser reports these 
values for default switching activity, after the post-im-
plementation. From the above table it is evident that, 
as the TCAM size increases, the power consumption 
also increases. A 64 × 20 configuration consumes 7mW 
of power dynamically, while a 512 × 160 configuration 
consumes 122mW.

Table 3 compares the proposed TCAM architecture’s in 
terms of parameters like the normalized slices, normal-
ized speed, PA, TP, update rate, energy per bit, and EDP 
with state-of-the-art FPGA TCAMs. By using the following 
equation, the number of normalized slices can be found:

Normalized slices =# of FPGA Slices + 
(# of 36 KBitsBRAMs * 24)    (1)

The normalized speed is calculated to provide a good 
comparison between different FPGA technology 
nodes:

 (2)

Throughput (TP), which is another important factor 
in TCAMs, is calculated with the help of the following 
equation:

   (3)

The proposed work has a throughput of 26.64, 50, and 
83 Gbit/sec, which is better than the existing work for 
the TCAM sizes of 512 × 40, 512 × 80, and 512 × 160, as 
seen in Table 3.

The update rate is defined as the ratio of clock rate 
(MHz) to the clock cycles, and its unit is a million up-
dates per second (MUPS) as follows:

Update rate (MUPS) =   (4)

In the literature, Performance per area (PA), represent-
ed mathematically is

   (5)
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Table 3: Performance Comparison with the state of the art FPGAs

Architecture
TCAM

Size (D×W)
LUTRAMS

(#)

Slice 
Registers

(#)

BRAM
(36K)

FPGA 
slices 
Usage

Speed
(MHz)

Tp
(Gbits

/
s)

Search
cycles

Delay
(ns)

Update 
rate

PA
(/1K)

P
(W)

Ebs
(fJ/
bit/

search)

EDP
(ns.fJ
/bit/

search)

Jiang[22] 1024 × 1501 20480 37556 0 20526 199 20.9 6 5.03 4.21 1.04 1.9 180 1290

REST [18] 72 × 281 8 390 1 77 50 0.98 5 20 0.07 0.998 0.11 798 22817

HP-TCAM [14] 512  ×  362 0 2670 56 1637 118 4.25 5 8.47 0.23 1.045 0.19 102.2 865

G-AETCAM[9] 512  ×  362 NA NA NA NA 358 NC - 2.79 1/358 NC NC - -

RPE-TCAM [29] 512  ×  362 NA NA NA NA 319 NC - 3.13 1/319 NC NC - -

UE-TCAM [17] 512  ×  362 0 1758 32 913 202 7.26 2 4.95 0.4 3.16 0.08 42.3 210

Xilinx Locke [30] 256  ×  323 4096 341 0 1406 100 5.2 1 10 9.6 1.05 0.09 68 413

Comp-TCAM [28] 512  ×  361 1536 - 16 541 525 - - - - 10.8 - - -

D-TCAM[26]

512  ×  361 NA NA 0 968 460 16.56 - 2.17 NA 8.76 NA NA NA

512  ×  721 NA NA 0 2357 214 15.41 - 4.67 NA 3.35 NA NA NA

512  ×  1441 NA NA 0 4835 259 37.3 - 3.86 NA 3.95 NA NA NA

DURE [24]
512  ×  362 4096 1174 0 1668 335 12.06 1 2.99 5.15 3.7 0.05 28 84

1024 ×1 442 32768 2700 0 9654 175 25.2 1 5.72 2.7 2.67 0.48 32.8 187

BPR-TCAM [8]

512 × 401 0 1105 0 768 360 10.08 1 2.78 - 6.72 - - -

512 × 801 0 1185 0 1280 188 12.77 1 5.32 - 2.55 - - -

512  ×1601 0 1345 0 2560 114 12.768 1 8.77 - 2.55 - - -

1024 × 1442 0 3029 0 4608 111.49 16.05 1 8.97 - 3.57 - - -

Frac-TCAM [27]

512 × 401 2048 4096 0 768 588 16.46 1 1.7 15.47 10.98 0.065 - -

512 × 801 4096 8192 0 1408 473.9 37.91 1 2.11 17.11 13.79 0.12 - -

512 × 1601 8192 16384 0 2944 254.8 40.77 1 3.92 9.58 7.09 0.15 - -

1024 × 1601 16384 32786 0 5888 250 39.95 1 4 9.4 6.95 0.19 - -

Proposed work

512 × 402 2048 4096 0 598 666 26.64 1 1.5 20.18 22.81 0.034 16.60 24.9

512 × 802 4096 8192 0 1105 635 50.8 1 1.57 19.24 22.86 0.065 15.87 24.92

512 × 1602 8192 16384 0 2222 524 83.84 1 1.91 15.88 19.32 0.110 13.43 25.65

1024 × 402 4096 8192 0 1374 563 22.52 1 1.78 17.06 16.78 0.070 17.09 30.42

1024 × 802 8192 16384 0 2428 532 42.56 1 1.88 16.12 17.95 0.120 15.87 29.84

1024 × 1602 16384 32786 0 4315 421 67.36 1 2.38 12.76 15.99 0.160 11.60 27.60

1 Virtex-7 (28 nm), 2Virtex-6 (40 nm), 3Virtex-5 (65 nm)

PA results in Table 3 show that the suggested TCAM im-
plementation outperforms prior work by a narrow mar-
gin. The lower resource usage is due to the search and 
matching logic. Then, using equation 6, the energy/bit/
search (Ebs) is calculated.

   (6)

Another important parameter for comparing TCAMs is 
Energy Delay Product (EDP), which is determined using 
the following equation:

Energy Delay Product (EDP)=Energy*Delay   (7)

It is observed that the proposed TCAM is 22%, 21%, 
24%, and 26% more efficient than Frac-TCAM respec-
tively, for the different TCAM sizes in slice resource 
utilizations. Compared to state-of-the-art designs, the 
proposed TCAM has less slice utilization due to slice 
carry chain utilization. Compared with Frac-TCAM, BPR-
TCAM, DURE, D-TCAM, and Comp-TCAM, the proposed 
TCAM achieves higher clock speed due to inbuilt slice 
carry chain utilization, SLICEM registers, and RAM32M 
for the different TCAM sizes.

TCAM size 512 × 40 has a dynamic power consumption 
of 34mW and a delay time of 1.5 ns. Thus, the energy 
consumption is 16.60 fJ/bit/search and the EDP is 24.9 
ns.fJ/bit/search. The EDP achieved in the proposed 
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work is 3.37 and 8.4 times lower than that of DURE [24] 
and UE-TCAM [17] respectively, and is the lowest among 
the various FPGA-based TCAM architectures. TCAM size 
1024 × 160 is a larger TCAM that uses 190mW of dy-
namic power and has a delay time of 2.38ns. Therefore, 
its EDP is 27.60 ns.fJ/bit/search, almost 46 times less 
than that of the 150-kbit TCAM implementation in [22]. 
Thus, the proposed work is also a very energy-efficient 
TCAM architecture.

5 Conclusion

An FPGA implementation of a TCAM that uses SRAM for 
higher energy efficiency and resource efficiency is pre-
sented. By leveraging the architecture of Xilinx FPGAs, 
TCAMs can be emulated efficiently. Utilizing LUTRAMs 
with dual outputs within the latest seven series FPGAs, 
as well as built-in slice registers and carry chains, a scal-
able TCAM architecture is proposed. When compared 
to the conventional 8 × 5 TCAM, the suggested design 
can map an 8 × 1 TCAM, virtually doubling the utiliza-
tion density. In addition, the use of in-slice registers to 
pipeline LUTRAM outputs allows for high-speed opera-
tion, and the utilization of carry-chain logic for match 
reduction archives lower slice utilization. Hence, both 
logic utilization and TP are enhanced, resulting in a 
better PA compared with the existing approaches. It 
achieved an EE and PA that were at least 3.34 and 8.4 
times and 56% better than those of the other FPGA-
based TCAM solutions, respectively. The large size of 
TCAM emulation on SRAM-based FPGAs, this solution 
outperforms the existing solutions with its low dynam-
ic power consumption.
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