
79

Original scientific paper

1 Introduction

Neural network capability of learning from data and
generalising the gained knowledge makes them a very
popular modelling tool in various application fields.
The popularity growth in the last years can be attrib-
uted to the deep models, which pose considerable
requirements to the processing hardware. Thus, new
hardware solutions are being developed continuously
to keep the processing hardware on par with the com-
puting demands.

Approximate computing has emerged as a popular
strategy for area- and energy-efficient circuit design,
where the challenge is to achieve the best trade-off

Journal of Microelectronics,
Electronic Components and Materials
Vol. 53, No. 2(2023), 79 – 86

https://doi.org/10.33180/InfMIDEM2023.203

How to cite:
R. Pilipović et al., “An Energy-efficient and Accuracy-adjustable bfloat16 Multiplier", Inf. Midem-J. Microelectron. Electron. Compon. Mater.,
Vol. 53, No. 2(2023), pp. 79–86

An Energy-efficient and Accuracy-adjustable
bfloat16 Multiplier
Ratko Pilipović1, Patricio Bulić1, Uroš Lotrič1

1Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

Abstract: The approximate multipliers have been extensively used in neural network inference, but due to the relatively large
error, they have yet to be successfully deployed in neural network learning. Recently, the bfloat16 format has emerged as a viable
number representation for neural networks. This paper proposes a novel approximate bfloat16 multiplier with on-the-fly adjustable
accuracy for energy-efficient learning in deep neural networks. The size of the proposed multiplier is only 62% of the size of the exact
bfloat16 multiplier. Furthermore, its energy footprint is up to five times smaller than the footprint of the exact bfloat16 multiplier. We
demonstrate the advantages of the proposed multiplier in deep neural network learning, where we successfully train the ResNet-20
network on the CIFAR-10 dataset from scratch.

Keywords: approximate computing; deep neural networks; energy-efficient processing; bfloat16 multiplier

Energijsko učinkovit približni množilnik v zapisu
bfloat16 z nastavljivo natančnostjo
Izvleček: Približni množilniki so se izkazali za zelo primerne pri sklepanju z nevronskimi mrežami, vendar zaradi relativno velike
napake še niso bili uspešno uporabljeni pri učenju globokih nevronskih mrež. Pred kratkim se je za predstavitev realnih števil v
nevronskih mrežah začel uveljavljati zapis bfloat16. V članku predlagamo nov približni množilnik v zapisu bfloat16 s sprotno nastavljivo
natančnostjo za energetsko učinkovito učenje v globokih nevronskih mrežah. Velikost predlaganega množilnika je samo 62 % velikosti
natančnega množilnika v zapisu bfloat16. Poleg tega je njegov energijski odtis do petkrat manjši od odtisa natančnega množilnika
bfloat16. Uporabnost predlaganega množilnika predstavimo na primeru učenja globokih nevronskih mrež, kjer uspešno naučimo
mrežo ResNet-20 na naboru podatkov CIFAR-10.

Ključne besede: približno računanje; globoke nevronske mreže; energijsko učinkovito računanje; množilnik v zapisu bfloat16

* Corresponding Author’s e-mail: patricio.bulic@fri.uni-lj.si

between design efficiency and accuracy. Efficient de-
signs come at the cost of accuracy reduction and vice
versa. Nevertheless, approximate computing perfectly
fits neural networks, which, to a certain extent, tolerate
or even adapt to an error caused by noisy input data
or erroneous computation. Widely used approaches in
approximate computing are precision scaling and ap-
proximate arithmetic.

In precision scaling [1], we use fewer bits to represent
numeric values rather than executing all the required
mathematical operations with the full representation.
Several standards for the floating-point presentation
recently appeared: IEEE 754-2019 for half-precision

80

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

[2], posit format with dynamic range and mantissa [3]
and Google’s bfloat16, targeting the machine-learning
workloads [4]. Storing the numeric values with fewer
bits reduces the size of arithmetic circuits and their
complexity. Besides, it saves on-chip memory and re-
duces the amount of data that must be transferred, im-
proving speed.

Multiplication represents a ubiquitous arithmetic op-
eration in neural network processing. Moreover, multi-
pliers are complex circuits that importantly affect a pro-
cessing hardware’s area and energy footprint. Hence,
the applications can benefit in terms of power and area
consumption by replacing the exact multiplier with an
approximate one. The approximate multiplier design
can originate in the logarithmic approximation of nu-
merical values [5-8] or non-logarithmic approaches,
like discarding some stages in Booth multipliers [9-11].
Although most approximate multipliers are designed
for fixed-point arithmetic, many floating-point designs,
capable of presenting numerical values in a wider
range, have appeared lately.

There have been several attempts to use approximate
integer multipliers in neural network learning [12-14].
The authors of these studies report that the learning
was successful, but they mainly worked with tiny neu-
ral networks. To the best of our knowledge, there has
yet to be a successful attempt to train large-scale neu-
ral networks using approximate multipliers. In neural
network learning, we need higher precision arithmetic,
so until now, neural networks have mainly been trained
using the exact floating-point multipliers [3], [15].

Common to most of the existing designs is that their
accuracy can be adjusted at the design time. As such,
they can perfectly fit the targeting application but fail
for many others. However, many applications need ad-
justable accuracy during run time. In neural network
processing, for example, we can use lower accuracy
during the inference phase but need much higher ac-
curacy during the learning phase. Moreover, some
parts of an application may still require exact multipli-
cation. For such an application, it would be beneficial
to design a multiplier capable of handling all accuracy
requirements, thus avoiding putting a plethora of mul-
tipliers on a chip and not exploiting them simultane-
ously.

Several precision-tuning 32-bit floating-point multipli-
ers for deep neural network processing have recently
been proposed. The work [16] proposes the 32-bit
floating-point approximate PAM multiplier with run-
time customisation, which can successfully replace
a single-precision floating-point multiplier in some
deep neural networks and image-processing applica-

tions. In [17], the authors proposed a 32-bit iterative
approximate floating-point multiplier based on two-
dimensional pseudo-Booth encoding. The accuracy of
the proposed multiplier is tuned by three parameters:
iteration, encoder’s radix, and word length after trun-
cation. To our knowledge, the only state-of-the-art ap-
proximate 16-bit bfloat multiplier is proposed in [15].
This variable-precision approximate multiplier uses the
bfloat16 format for operand representation and the
intermediate conversion of product exponent to the
posit encoding to control the mantissa multiplication
accuracy. All these multipliers were used only in the
inference phase in deep learning models and in image-
processing applications, where neglectable degrada-
tion in accuracy was observed.

A design that would suit most applications should be
able to multiply with the required accuracy, not exclud-
ing exact computation, and accept a wide range of nu-
meric values. In this paper, we propose an efficient and
accuracy-adjustable approximate 16-bit multiplier for
operands presented in the bfloat16 format, which does
not require any hardware reconfiguration to adapt ac-
curacy and demonstrates its applicability in the neural
network inference and learning phases.

In the remainder of the paper, we first detail the pro-
posed BFILM multiplier design. Section 3 shows the
hardware characteristics of the design and demon-
strates the BFILM multiplier usability in neural network
inference and learning. Lastly, we conclude the paper
with the main findings.

2 The design of BFILM multiplier

The proposed brain float iterative logarithmic multipli-
er (BFILM) operates on numerical values in the bfloat16
format. The advantage of representing the numerical
value 0 in the bfloat16 format is, that it keeps one sign
bit s(0) and the 8-bit exponent e(0) equal to the IEEE
754 single-precision floating-point format but short-
ens the mantissa m(0) to 7 bits. Thus, it enables using
tiny numerical values, important in the neural network
learning phase [18] for example. While the multiplier
determines the sign and the exponent exactly, it fol-
lows the idea of the approximate iterative logarithmic
multiplier to compute the mantissa. The number of
steps, which determine the accuracy of the multiplier,
can be changed on the fly.

Fig. 1 shows the structure of the BFILM multiplier, which
takes operands 01 and 02 to compute the approximate
product Papprox. The multiplier consists of a straightfor-
ward circuit for determining the sign of the product

81

and two loosely connected circuits for determining the
product’s exponent and mantissa.

2.1 The exponent circuitry

The exponent circuity in Fig. 1 incorporates two ad-
ders. We must add both operands’ exponents to get
the product’s exponent. However, the bfloat16 format
uses the offset-binary representation of the exponent,
with the zero offset being 127. To correctly code the
product’s exponent, we need an additional adder to
subtract the offset. The logic connected to the carry
input cin of the first adder covers the situations when
the product’s exponent must be normalised due to the
large approximate product Pa obtained from the man-
tissa multiplier.

2.2 The mantissa circuitry

The mantissa circuitry in Fig. 1 comprises the mantissa
multiplier and the mantissa normalizer. The mantissa
stores only the fractional bits, to which we must pre-
pend the leading one to get an 8-bit fixed point un-
signed number at the input to the mantissa multiplier.
The multiplication results is a product, given in 16-bit
unsigned fixed-point format with two integer bits
and 14 fractional bits, of which we take only the nine
most significant bits to the output Pa of the mantissa
multiplier. We form the product’s mantissa m(Papprox)
regarding the integer part of the output Pa. When it is
greater than one with Pa [8] set, we normalise the result
by shifting the radix point one place to the left. To do
so, we increment the product’s exponent and take the
middle seven bits Pa [7:1]. In all other cases, normalisa-
tion is unnecessary, and the product’s mantissa equals
the seven least significant bits Pa [6:0].

Figure 1: The circuitry of the 16-bit bfloat multiplier.

An important component of the BFILM multiplier is
the approximate mantissa multiplier that relies on
the iterative logarithmic multiplier (ILM) [7]. Suppose
we have two non-negative 8-bit operands x and y, ex-
pressed as the sum of the leading bit and the residu-

um, 2 xk
xx r= + and 2 yk

yy r= + , which multiply to
the product

� � 2 2
y yk k

y yp xy x r x xr� � � � �

 2 2 .
y xk k

y x yx r r r� � �
 (1)

By summing up the first-order Taylor expansions of

� �2 2log log 1 2 xk
x xx k r �� � �

� � 2ln 1 2 log exk
x xk r �� � �

2 2 log exk

x xk r �� �

 (2)

and 2 2log 2 log eyk
y yy k r −≈ + , we get the approxima-

tion

 � � � � � � 2 2 2 2 log ex y y x
k k k k

x y x yk k r r� �� � � �

� � � � � �2 log 1 2 2 2x y y x
k k k k

x y x yk k r r� �� �� � � � �� �� �

2log p

 (3)

By taking the antilogarithm of log2 p approximation, we
obtain an approximate product

 � � � � � �a
2 1 2 2 2

x y x y y x
k k k k k k

x yp r r� � �� �� � �� �� �
� �

 2 2 2
x y y x
k k k k

x yr r�� � �

 � � 2 2 2
yx xkk k

x yr r� � �

2 2
y xk k

yx r� �

 (4)

which equals equation (1) with the last term omit-
ted. Thus, computing the product approximation pa
requires only two shifts and an addition, completely
avoiding multiplication of the term rxry.

The ILM core circuitry in Fig. 2 computes the approxi-
mate product and both residua. The leading one de-

tectors extract the leading one bits 2 xk and 2 yk
 and

their characteristic numbers kx and ky from operands
x and y. We need both leading one bit to compute
the residua and the characteristic numbers to do the
required shifts of the operand x and the residuum ry.
The truncated barrel shifters output only the nine most
significant bits required in further processing, thus im-
portantly reducing their size and the size of the adder.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

82

The relative error of the product (p - pa)/p = rxry /p can be
as high as 25 %. To reduce it, we can iteratively repeat
the above procedure by multiplying residua rx and ry and
adding the result to the current approximation. The pro-
cedure can be repeated until at least one residuum be-
comes zero, thus achieving an error as small as necessary.

The mantissa multiplier shown in Fig. 3 comprises the
ILM core, two multiplexers, and an accumulator to itera-
tively refine the approximate mantissa product Pa. In the

initial ILM step (I = 1), the multiplexers pass the operands
X and Y to the ILM core, while in the next ILM steps (I>1),
the multiplexers feed the ILM core with residua rx and ry
from the previous ILM step. The accumulator keeps the
approximation of the mantissa product, which is in each
ILM step increased by the value pa. To comply with the
circuitry presented in Fig. 1, the accumulator needs to
keep only the nine most significant bits.

At this point, we would like to emphasize that the pro-
posed multiplier does not require any hardware recon-
figuration if we want to perform more than one ILM
step. For example, when more ILM steps are required,
we only need to feed the residua rx and ry (Fig. 2) back
to the input of the ILM core as presented in Fig. 3. In
this case, the multiplexers choose what goes to the ILM
core: the new operands, X and Y, or the residua from
the previous iteration, rx and ry. In the actual implemen-
tation, of course, we must add registers at the input of
multiplexers, but these are not shown for simplicity.

3 Results

3.1 Hardware performance

We implement the multipliers in Verilog and synthesise
them to the SkyWater PDK 130 cell library using Open-
Lane [19-21]. The library consists of a 130 nm technol-
ogy with an operating voltage of 1.8 V, and five metal
layers [22-23]. The timing constraints, used for all evalu-
ated designs, specify clock-related parameters, which
affect synthesis and timing analysis. We set a clock sig-
nal with a period of 10 ns, hence not violating a critical
path. To evaluate the power, we use timing with a 100
MHz virtual clock (by definition, a virtual clock is a clock
that has no real source in the design and is commonly
used to specify delay constraints during static timing
analysis), load capacitance equal to 33.442 fF (PDK de-
fault) and supply voltage equal to 1.8 V.

We analysed the hardware performance of the BFILM
multiplier in terms of power, area, delay, and power-
delay-product (PDP) and compare it with the exact
bfloat16 multiplier. Table 1 shows that the BFILM mul-
tiplier outperforms the exact multiplier in all hardware
metrics; its energy consumption estimated through
PDP is even more than five times smaller.

Table 1: The synthesis results for the examined multipliers.

Multiplier Delay
[ns]

Power
[uW]

Area
[um2]

PDP
[fJ]

exact bfloat16 2.89 869 6120 2590
BFILM 1.67 298 3796 498

Figure 2: The circuitry of the ILM core.

Figure 3: The circuitry of the approximate mantissa
multiplier.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

83

Table 2 compares hardware characteristics of the state-
of-the-art variable-accuracy bfloat16 multipliers. The
results are given as relative values to the standard refer-
ence implementations of the exact bfloat16 multiplier.
The BFILM multiplier, with its very slim design, outper-
forms the recently proposed BFLP16-prop multiplier
[15] in all aspects.

Table 2: Comparison of the bfloat16 multipliers regarding
hardware gains relative to the exact bfloat16 multiplier.

Multiplier Delay
[%]

Power
[%]

Area
[%]

PDP
[%]

exact bfloat16 100 100 100 100
BFLP16-prop [15] 104 58 81 59
BFILM 58 33 62 19

Since the BFILM multiplier does not require reconfigura-
tion or additional hardware for more accurate processing,
the multiplier’s size (area) and power are preserved for an
arbitrary number of the ILM steps. Of course, with the ad-
ditional ILM steps, it is necessary to observe that residua rx
and ry must be multiplied once or twice and added to the
final product. Therefore, in this case, the processing time
required to calculate the product increases linearly with
the number of the ILM steps and thus does also the ener-
gy consumption. We assess different configurations of the
BFILM multiplier in terms of delay, energy consumption
(PDP) and the mean relative error distance (MRED), and
present them in Table 3. For easier comparison, the delay
and energy consumption are given relative to the values
of the exact bfloat16 multiplier.

The proposed multiplier with two or three ILM steps has
a lower energy consumption than the exact bfloat16
multiplier and the BFLP16-prop multiplier [15]. More-
over, the BFILM multiplier with two ILM steps is not
much slower than the state-of-the-art BFLP16-prop
multiplier [15]. However, the BFILM multiplier with only
one ILM step has a rather large error, which with two
ILM steps comes close to the BFLP16-prop multiplier’s
MRED, and then drops by order of magnitude with
each additional ILM step.

Table 3: Comparison of delay, PDP, and the MRED er-
ror for the different number of ILM steps in the BFILM
multiplier.

Multiplier Delay
[%]

PDP
[%]

MRED
[10-3]

exact bfloat16 100 100 0
BFLP16-prop [15] 104 59 3.50
BFILM, 1 ILM step 58 19 91.21
BFILM, 2 ILM steps 115 38 9.08
BFILM, 3 ILM steps 173 58 0.86

These results suggest that the BFILM multiplier should
fit well with error-resilient applications where low-ener-
gy consumption is an important goal and where most
of the time the BFILM multiplier with a small number of
ILM steps could be used. An important feature of the
BFILM multiplier is that we can control the product ac-
curacy by adjusting the number of ILM steps without
hardware modification, ultimately leading even to re-
moving the exact multiplier from the circuitry.

3.2 Impact on neural network learning

Convolutional neural networks achieve remarkable
performance in visual recognition tasks [24]. However,
the learning and inference of convolutional neural net-
works are computationally demanding tasks that in-
volve many multiplications. Nevertheless, convolution-
al neural networks are error-tolerant models, making
them perfect candidates for employing approximate
multipliers. Therefore, we assess the influence of the
proposed multiplier on the performance of the infer-
ence and learning phases.

To evaluate the BFILM multiplier, we select the
ResNet-20 convolutional neural network [25-26] and
the CIFAR-10 dataset [27]. We change the number rep-
resentation in the ResNet-20 convolutional neural net-
work from the single-precision floating-point format
to the bfloat16 format. In the experiments, we use the
Caffe framework [28], where we replace the calls to the
cuBLAS multiplication routines with the calls to our
own GPU kernels, which emulate the proposed BFILM
multiplier.

The neural network learns using the predetermined
split of the dataset to train and test sets [27]. Before
learning, we preprocess the images by subtracting
their mean value. Besides, we quantify the ResNet-20
single-precision floating-point weights to the bfloat16
format representation by simply discarding the last
16 bits of the floating-point mantissa. In the learning
phase, we optimize the multinomial logistic loss func-
tion [29] with the Nesterov momentum algorithm [30].
The learning starts with randomly initialised weights. In
all experiments, we train the network for 64000 epochs.

In the first experiment, we evaluate the influence of the
proposed multiplier on the ResNet-20 classification ac-
curacy. As the BFILM multiplier is configurable in terms
of the number of steps affecting the multiplication er-
ror, we test several BFILM configurations. In the tested
configurations, BFILM-1-1, BFILM-1-2, BFILM-2-2 and
BFILM-2-3, the first number denotes the number of ILM
steps in the inference phase, while the second number
denotes the number of ILM steps used in the learning
phase.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

84

Table 4 shows the classification accuracy of the
CIFAR-10 dataset. For each configuration, we list the av-
erage value and standard deviation over five runs. Sig-
nificant multiplication error of BFILM-1-1 leads to low
classification accuracy. Increasing the number of the
ILM steps in the inference and learning phase improves
classification accuracy. For example, with BFILM-2-2
and BFILM-2-3, the classification accuracy is almost the
same as with the exact bfloat16 multiplier.

Table 4: Performance of the ResNet-20 convolutional
neural network on the CIFAR-10 dataset using bfloat16
multipliers.

Multiplier Test set classification accuracy [%]
exact bfloat16 91.50 ± 0.10
BFILM-1-1 86.32 ± 1.26
BFILM-1-2 90.98 ± 0.15
BFILM-2-2 91.30 ± 0.30
BFILM-2-3 91.40 ± 0.20

Also, we can see from the results for BFILM-1-1 and
BFILM-1-2 that increasing the number of the ILM steps
in the learning phase positively affects classification
performance. On the other hand, a further increase
in the number of steps in the inference phase from
BFILM-1-2 to BFILM-2-2 has much less impact. Moreo-
ver, according to Table 3, BFILM-1-2 has a very small
energy footprint and thus could be sufficient for neural
network inference and learning.

The second experiment highlights the advantage of the
on-the-fly accuracy adaptation of the BFILM multiplier,
which can help in faster and more energy-efficient neu-
ral network learning. The idea is to start with one ILM
step in the inference and learning phase to save energy
and later, when model performance improves, increase
the number of the ILM steps to further refine the result.

Fig. 4 shows the outcome of the learning process on
the training and testing set for five separate runs, each
with randomly initialised neural network weights. For
the loss (red) and the accuracy (green), we show the
span of obtained values and the curve averaged over
all runs. We see that with the BFILM-1-1 configuration,
the model improves rapidly and reaches a classification
accuracy of more than 60 % in only 10000 epochs. At
this point, we use an additional ILM step in the learning
phase (BFILM-1-2) to improve the model’s convergence
and achieve more than 99.4 % of the accuracy of the
exact bfloat16 multiplier. However, if the accuracy still
needs to be increased for some applications, we can
enhance the model by training it with additional ILM
steps.

Figure 4: Varying configuration of BFILM during the
learning phase.

4 Conclusion

In this paper, we proposed a novel approximate
bfloat16 multiplier with adjustable accuracy, which can
be achieved without any hardware reconfiguration.
Instead, the proposed BFILM multiplier iteratively uses
an approximate logarithmic multiplier core to reduce
the error. This way, we avoid using additional error re-
finement circuits, keeping the design small and energy
efficient. The primary purpose of the proposed design
is to use it in deep neural network processing in the in-
ference and learning phases. We apply the BFILM multi-
plier in the ResNet-20 convolutional neural network to
classify the CIFAR-10 dataset. We demonstrate the im-
pact of various BFILM configurations on the neural net-
work learning process and classification accuracy. The
results show that we can easily adjust the multiplier’s
accuracy according to the application’s requirements.
The main advantage of the on-the-fly adaptation of the
BFILM multiplier comes to expression during the learn-
ing phase. The results prove that we can start with one
ILM step in the inference and learning phase to save
energy and later, when model performance improves,
increase the number of the ILM steps to refine the re-
sult further. In future work, we aim to develop an algo-
rithm that could optimize the learning process in terms
of speed and efficiency by automatically adapting the
ILM steps to the BFILM multiplier when needed.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

85

5 Acknowledgments

This research was supported by Slovenian Research
Agency under Grants P2-0359 (National research pro-
gram Pervasive computing), P2-0241 (Synergy of the
technological systems and processes) and by Sloveni-
an Research Agency and Ministry of Civil Affairs, Bosnia
and Herzegovina, under Grant BI-BA/21-23-033 (Bilat-
eral Collaboration Project).

6 Conflict of Interest

The authors declare no conflict of interest.

The funders had no role in the design of the study; in
the collection, analyses, or interpretation of data; in the
writing of the manuscript; nor in the decision to pub-
lish the results.

7 References

1. G. Armeniakos, G. Zervakis, D. Soudris, and J. Hen-
kel, ‘‘Hardware approximate techniques for deep
neural network accelerators: A survey,’’ ACM Com-
put. Surv., mar 2022.

 https://doi.org/10.1145/3527156.
2. “IEEE standard for floating-point arithmetic,””

2019, IEEE Std 754-2019 (Revision of IEEE 754-
2008).

3. R. Murillo, A. A. Del Barrio Garcia, G. Botella, M. S.
Kim, H. Kim, and N. Bagherzadeh, “Plam: a posit
logarithm-approximate multiplier,” IEEE Transac-
tions on Emerging Topics in Computing, pp. 1–1,
2021.

4. H. Kim, ‘‘A low-cost compensated approximate
multiplier for bfloat16 data processing on convo-
lutional neural network inference,’’ ETRI Journal,
vol. 43, no. 4, pp. 684–693, 2021. https://onlineli-
brary.wiley.com/doi/abs/10.4218/etrij.2020-0370.

5. J. N. Mitchell, ‘‘Computer multiplication and divi-
sion using binary logarithms,’’ IRE Transactions on
Electronic Computers, vol. EC-11, no. 4, pp. 512–
517, Aug. 1962.

6. V. Mahalingam and N. Ranganathan, ‘‘Improving
accuracy in Mitchell’s logarithmic multiplication
using operand decomposition,’’ IEEE Transactions
on Computers, vol. 55, no. 12, pp. 1523–1535, Dec.
2006.

 https://doi.org/10.1109/TC.2006.198.
7. Z. Babić, A. Avramović, and P. Bulić, ‘‘An iterative

logarithmic multiplier,’’ Microprocessors and Mi-
crosystems, vol. 35, no. 1, pp. 23–33, 2011.

 https://doi.org/10.1016/j.micpro.2010.07.001.

8. M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida,
and N. Bagherzadeh, ‘‘Efficient Mitchell’s approxi-
mate log multipliers for convolutional neural net-
works,’’ IEEE Transactions on Computers, vol. 68, no.
5, pp. 660–675, Dec. 2019.

 https://doi.org/10.1109/TC.2018.2880742.
9. V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi,

‘‘Approximate hybrid high radix encoding for
energy-efficient inexact multipliers,’’ IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 3, pp. 421–430, Nov. 2018.

 https://doi.org/10.1109/TVLSI.2017.2767858.
10. H. Waris, C. Wang, and W. Liu, ‘‘Hybrid low radix

encoding-based approximate Booth multipliers,’’
IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 67, no. 12, pp. 3367–3371, Feb. 2020.

 https://doi.org/10.1109/TCSII.2020.2975094.
11. H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi,

‘‘Hybrid partial product-based high-performance
approximate recursive multipliers,’’ IEEE Transac-
tions on Emerging Topics in Computing, vol. 10, no.
1, pp. 507–513, 2022.

 https://doi.org/10.1109/TETC.2020.3013977.
12. U. Lotrič and P. Bulić, ‘‘Applicability of approxi-

mate multipliers in hardware neural networks,’’
Neurocomputing, vol. 96, pp. 57–65, 2012 [On-
line]. Available: https://www.sciencedirect.com/
science/article/pii/S0925231212003311

13. T. Y. Cheng, Y. Masuda, J. Chen, J. Yu, and M. Hashi-
moto, ‘‘Logarithm-approximate floating-point mul-
tiplier is applicable to power-efficient neural net-
work training,’’ Integration, vol. 74, pp. 19–31, 2020.

 https://doi.org/10.1016/j.vlsi.2020.05.002.
14. R. Pilipović, V. Risojević, J. Božič, P. Bulić, and U.

Lotrič, ‘‘An approximate GEMM unit for energy-
efficient object detection,’’ Sensors, vol. 21, no. 12,
2021.

 https://doi.org/10.3390/s21124195
15. H. Zhang and S. B. Ko, ‘‘Variable-precision ap-

proximate floating-point multiplier for efficient
deep learning computation,’’ IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, pp.
2503–2507, 5 2022.

 https://doi.org/10.1109/TCSII.2022.3161005.
16. C. Chen, W. Qian, M. Imani, X. Yin, and C. Zhuo,

‘‘PAM: A piecewise-linearly-approximated float-
ing-point multiplier with unbiasedness and con-
figurability,’’ IEEE Transactions on Computers, vol.
71, pp. 2473–2486, 10 2022.

 https://doi.org/10.1109/TC.2021.3131850.
17. A. Towhidy, R. Omidi, and K. Mohammadi, ‘‘On the

design of iterative approximate floating-point
multipliers,’’ IEEE Transactions on Computers, 2022.

 https://doi.org/10.1109/TC.2022.3216465.
18. A. Y. Romanov, A. L. Stempkovsky, I. V. Lariushkin,

G. E. Novoselov, R. A. Solovyev, V. A. Starykh, I. I.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

86

Romanova, D. V. Telpukhov, and I. A. Mkrtchan,
‘‘Analysis of posit and bfloat arithmetic of real
numbers for machine learning,’’ IEEE Access, vol. 9,
pp. 82 318–82 324, 2021.

 https://doi.org/10.1109/ACCESS.2021.3086669.
19. A. A. Ghazy and M. Shalan, ‘‘OpenLANE: The

Open-Source Digital ASIC Implementation Flow,’’
in 2020 Workshop on Open-Source EDA Technol-
ogy (WOSET), 2020, last accessed 27 September
2022 .Available: https://woset-workshop.github.
io/PDFs/2020/a21.pdf

20. OpenLane, ‘‘Openlane EDA Toolset.’’ 2022, last
accessed 27 September 2022. Available: https://
github.com/The-OpenROAD-Project/OpenLane

21. M. Chupilko, A. Kamkin, and S. Smolov, ‘‘Survey of
open-source flows for digital hardware design,’’
in 2021 Ivannikov Memorial Workshop (IVMEM),
2021, pp. 11–16.

22. T. Edwards, ‘‘Google/SkyWater and the Promise
of the Open PDK,’’ in 2020 Workshop on Open-
Source EDA Technology (WOSET), 2020, last ac-
cessed 27 September 2022. Available: https://
woset-workshop.github.io/PDFs/2020/a03.pdf

23. ‘‘Google SkyWater Open Source PDK.’’ 2022, last
accessed 27 September 2022. Available: https://
github.com/google/skywater-pdk

24. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Ima-
genet classification with deep convolutional neu-
ral networks,’’ in Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger, Eds., vol. 25. Lake
Tahoe, NV, USA: Curran Associates, Inc., Dec. 2012,
pp. 1097–1105.

25. K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual
learning for image recognition,’’ in 2016 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 770–778.

26. Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for
accelerating very deep neural networks,’’ in 2017
IEEE International Conference on Computer Vi-
sion (ICCV), Oct. 2017, pp. 1398–1406.

27. A. Krizhevsky, ‘‘Learning multiple layers of features
from tiny images,’’ University of Toronto, Toronto,
Tech. Rep., Apr. 2009.

28. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
‘‘Caffe: Convolutional architecture for fast feature
embedding,’’ in Proceedings of the 22nd ACM In-
ternational Conference on Multimedia, ser. MM
’14. New York, NY, USA: Association for Comput-
ing Machinery, 2014, p. 675–678. Available:

 https://doi.org/10.1145/2647868.2654889
29. J. S. Long and J. Freese, Regression Models for

Categorical Dependent Variables using Stata, 3rd

Edition. StataCorp LP, 2014. Available: https://
www.stata.com/bookstore/regression-models-
categorical-dependent-variables

30. I. Sutskever, J. Martens, G. Dahl, and G. Hinton,
‘‘On the importance of initialization and momen-
tum in deep learning,’’ in Proceedings of the 30th
International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research,
S. Dasgupta and D. McAllester, Eds., vol. 28, no. 3.
Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp.
1139–1147. Available: https://proceedings.mlr.
press/v28/sutskever13.html 6 VOLUME 11, 2023

Arrived: 22. 06. 2023
Accepted: 21. 07. 2023

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86

Copyright © 2023 by the Authors.
This is an open access article dis-
tributed under the Creative Com-

mons Attribution (CC BY) License (https://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original work is properly cited.

