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1 Introduction

Neural network capability of learning from data and 
generalising the gained knowledge makes them a very 
popular modelling tool in various application fields. 
The popularity growth in the last years can be attrib-
uted to the deep models, which pose considerable 
requirements to the processing hardware. Thus, new 
hardware solutions are being developed continuously 
to keep the processing hardware on par with the com-
puting demands.

Approximate computing has emerged as a popular 
strategy for area- and energy-efficient circuit design, 
where the challenge is to achieve the best trade-off 
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Abstract: The approximate multipliers have been extensively used in neural network inference, but due to the relatively large 
error, they have yet to be successfully deployed in neural network learning. Recently, the bfloat16 format has emerged as a viable 
number representation for neural networks. This paper proposes a novel approximate bfloat16 multiplier with on-the-fly adjustable 
accuracy for energy-efficient learning in deep neural networks. The size of the proposed multiplier is only 62% of the size of the exact 
bfloat16 multiplier. Furthermore, its energy footprint is up to five times smaller than the footprint of the exact bfloat16 multiplier. We 
demonstrate the advantages of the proposed multiplier in deep neural network learning, where we successfully train the ResNet-20 
network on the CIFAR-10 dataset from scratch.
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Energijsko učinkovit približni množilnik v zapisu 
bfloat16 z nastavljivo natančnostjo
Izvleček: Približni množilniki so se izkazali za zelo primerne pri sklepanju z nevronskimi mrežami, vendar zaradi relativno velike 
napake še niso bili uspešno uporabljeni pri učenju globokih nevronskih mrež. Pred kratkim se je za predstavitev realnih števil v 
nevronskih mrežah začel uveljavljati zapis bfloat16. V članku predlagamo nov približni množilnik v zapisu bfloat16 s sprotno nastavljivo 
natančnostjo za energetsko učinkovito učenje v globokih nevronskih mrežah. Velikost predlaganega množilnika je samo 62 % velikosti 
natančnega množilnika v zapisu bfloat16. Poleg tega je njegov energijski odtis do petkrat manjši od odtisa natančnega množilnika 
bfloat16. Uporabnost predlaganega množilnika predstavimo na primeru učenja globokih nevronskih mrež, kjer uspešno naučimo 
mrežo ResNet-20 na naboru podatkov CIFAR-10.
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between design efficiency and accuracy. Efficient de-
signs come at the cost of accuracy reduction and vice 
versa. Nevertheless, approximate computing perfectly 
fits neural networks, which, to a certain extent, tolerate 
or even adapt to an error caused by noisy input data 
or erroneous computation. Widely used approaches in 
approximate computing are precision scaling and ap-
proximate arithmetic.

In precision scaling [1], we use fewer bits to represent 
numeric values rather than executing all the required 
mathematical operations with the full representation. 
Several standards for the floating-point presentation 
recently appeared: IEEE 754-2019 for half-precision 
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[2], posit format with dynamic range and mantissa [3] 
and Google’s bfloat16, targeting the machine-learning 
workloads [4]. Storing the numeric values with fewer 
bits reduces the size of arithmetic circuits and their 
complexity. Besides, it saves on-chip memory and re-
duces the amount of data that must be transferred, im-
proving speed.

Multiplication represents a ubiquitous arithmetic op-
eration in neural network processing. Moreover, multi-
pliers are complex circuits that importantly affect a pro-
cessing hardware’s area and energy footprint. Hence, 
the applications can benefit in terms of power and area 
consumption by replacing the exact multiplier with an 
approximate one. The approximate multiplier design 
can originate in the logarithmic approximation of nu-
merical values [5-8] or non-logarithmic approaches, 
like discarding some stages in Booth multipliers [9-11]. 
Although most approximate multipliers are designed 
for fixed-point arithmetic, many floating-point designs, 
capable of presenting numerical values in a wider 
range, have appeared lately.

There have been several attempts to use approximate 
integer multipliers in neural network learning [12-14]. 
The authors of these studies report that the learning 
was successful, but they mainly worked with tiny neu-
ral networks. To the best of our knowledge, there has 
yet to be a successful attempt to train large-scale neu-
ral networks using approximate multipliers. In neural 
network learning, we need higher precision arithmetic, 
so until now, neural networks have mainly been trained 
using the exact floating-point multipliers [3], [15].

Common to most of the existing designs is that their 
accuracy can be adjusted at the design time. As such, 
they can perfectly fit the targeting application but fail 
for many others. However, many applications need ad-
justable accuracy during run time. In neural network 
processing, for example, we can use lower accuracy 
during the inference phase but need much higher ac-
curacy during the learning phase. Moreover, some 
parts of an application may still require exact multipli-
cation. For such an application, it would be beneficial 
to design a multiplier capable of handling all accuracy 
requirements, thus avoiding putting a plethora of mul-
tipliers on a chip and not exploiting them simultane-
ously.

Several precision-tuning 32-bit floating-point multipli-
ers for deep neural network processing have recently 
been proposed. The work [16] proposes the 32-bit 
floating-point approximate PAM multiplier with run-
time customisation, which can successfully replace 
a single-precision floating-point multiplier in some 
deep neural networks and image-processing applica-

tions.  In [17], the authors proposed a 32-bit iterative 
approximate floating-point multiplier based on two-
dimensional pseudo-Booth encoding. The accuracy of 
the proposed multiplier is tuned by three parameters: 
iteration, encoder’s radix, and word length after trun-
cation. To our knowledge, the only state-of-the-art ap-
proximate 16-bit bfloat multiplier is proposed in [15]. 
This variable-precision approximate multiplier uses the 
bfloat16 format for operand representation and the 
intermediate conversion of product exponent to the 
posit encoding to control the mantissa multiplication 
accuracy. All these multipliers were used only in the 
inference phase in deep learning models and in image-
processing applications, where neglectable degrada-
tion in accuracy was observed.

A design that would suit most applications should be 
able to multiply with the required accuracy, not exclud-
ing exact computation, and accept a wide range of nu-
meric values. In this paper, we propose an efficient and 
accuracy-adjustable approximate 16-bit multiplier for 
operands presented in the bfloat16 format, which does 
not require any hardware reconfiguration to adapt ac-
curacy and demonstrates its applicability in the neural 
network inference and learning phases.

In the remainder of the paper, we first detail the pro-
posed BFILM multiplier design. Section 3 shows the 
hardware characteristics of the design and demon-
strates the BFILM multiplier usability in neural network 
inference and learning. Lastly, we conclude the paper 
with the main findings.

2 The design of BFILM multiplier

The proposed brain float iterative logarithmic multipli-
er (BFILM) operates on numerical values in the bfloat16 
format. The advantage of representing the numerical 
value 0 in the bfloat16 format is, that it keeps one sign 
bit s(0) and the 8-bit exponent e(0) equal to the IEEE 
754 single-precision floating-point format but short-
ens the mantissa m(0) to 7 bits. Thus, it enables using 
tiny numerical values, important in the neural network 
learning phase [18] for example. While the multiplier 
determines the sign and the exponent exactly, it fol-
lows the idea of the approximate iterative logarithmic 
multiplier to compute the mantissa. The number of 
steps, which determine the accuracy of the multiplier, 
can be changed on the fly. 

Fig. 1 shows the structure of the BFILM multiplier, which 
takes operands 01 and 02 to compute the approximate 
product Papprox. The multiplier consists of a straightfor-
ward circuit for determining the sign of the product 
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and two loosely connected circuits for determining the 
product’s exponent and mantissa.

2.1 The exponent circuitry

The exponent circuity in Fig. 1 incorporates two ad-
ders. We must add both operands’ exponents to get 
the product’s exponent. However, the bfloat16 format 
uses the offset-binary representation of the exponent, 
with the zero offset being 127. To correctly code the 
product’s exponent, we need an additional adder to 
subtract the offset. The logic connected to the carry 
input cin of the first adder covers the situations when 
the product’s exponent must be normalised due to the 
large approximate product Pa obtained from the man-
tissa multiplier.

2.2 The mantissa circuitry

The mantissa circuitry in Fig. 1 comprises the mantissa 
multiplier and the mantissa normalizer. The mantissa 
stores only the fractional bits, to which we must pre-
pend the leading one to get an 8-bit fixed point un-
signed number at the input to the mantissa multiplier. 
The multiplication results is a product, given in 16-bit 
unsigned fixed-point format with two integer bits 
and 14 fractional bits, of which we take only the nine 
most significant bits to the output Pa of the mantissa 
multiplier. We form the product’s mantissa m(Papprox) 
regarding the integer part of the output Pa. When it is 
greater than one with Pa [8] set, we normalise the result 
by shifting the radix point one place to the left. To do 
so, we increment the product’s exponent and take the 
middle seven bits Pa [7:1]. In all other cases, normalisa-
tion is unnecessary, and the product’s mantissa equals 
the seven least significant bits Pa [6:0]. 

Figure 1: The circuitry of the 16-bit bfloat multiplier.

An important component of the BFILM multiplier is 
the approximate mantissa multiplier that relies on 
the iterative logarithmic multiplier (ILM) [7]. Suppose 
we have two non-negative 8-bit operands x and y, ex-
pressed as the sum of the leading bit and the residu-

um, 2 xk
xx r= +  and 2 yk

yy r= + , which multiply to 
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By taking the antilogarithm of log2 p approximation, we 
obtain an approximate product
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which equals equation (1) with the last term omit-
ted. Thus, computing the product approximation pa 
requires only two shifts and an addition, completely 
avoiding multiplication of the term rxry.

The ILM core circuitry in Fig. 2 computes the approxi-
mate product and both residua. The leading one de-

tectors extract the leading one bits 2 xk  and 2 yk
 and 

their characteristic numbers kx and ky from operands 
x and y. We need both leading one bit to compute 
the residua and the characteristic numbers to do the 
required shifts of the operand x and the residuum ry. 
The truncated barrel shifters output only the nine most 
significant bits required in further processing, thus im-
portantly reducing their size and the size of the adder.
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The relative error of the product (p - pa)/p = rxry /p can be 
as high as 25 %. To reduce it, we can iteratively repeat 
the above procedure by multiplying residua rx and ry and 
adding the result to the current approximation. The pro-
cedure can be repeated until at least one residuum be-
comes zero, thus achieving an error as small as necessary.

The mantissa multiplier shown in Fig. 3 comprises the 
ILM core, two multiplexers, and an accumulator to itera-
tively refine the approximate mantissa product Pa. In the 

initial ILM step (I = 1), the multiplexers pass the operands 
X and Y to the ILM core, while in the next ILM steps (I>1), 
the multiplexers feed the ILM core with residua rx and ry 
from the previous ILM step. The accumulator keeps the 
approximation of the mantissa product, which is in each 
ILM step increased by the value pa. To comply with the 
circuitry presented in Fig. 1, the accumulator needs to 
keep only the nine most significant bits.

At this point, we would like to emphasize that the pro-
posed multiplier does not require any hardware recon-
figuration if we want to perform more than one ILM 
step. For example, when more ILM steps are required, 
we only need to feed the residua rx  and ry (Fig. 2) back 
to the input of the ILM core as presented in Fig. 3. In 
this case, the multiplexers choose what goes to the ILM 
core: the new operands, X and Y, or the residua from 
the previous iteration, rx and ry. In the actual implemen-
tation, of course, we must add registers at the input of 
multiplexers, but these are not shown for simplicity.

3 Results

3.1 Hardware performance

We implement the multipliers in Verilog and synthesise 
them to the SkyWater PDK 130 cell library using Open-
Lane [19-21]. The library consists of a 130 nm technol-
ogy with an operating voltage of 1.8 V, and five metal 
layers [22-23]. The timing constraints, used for all evalu-
ated designs, specify clock-related parameters, which 
affect synthesis and timing analysis. We set a clock sig-
nal with a period of 10 ns, hence not violating a critical 
path. To evaluate the power, we use timing with a 100 
MHz virtual clock (by definition, a virtual clock is a clock 
that has no real source in the design and is commonly 
used to specify delay constraints during static timing 
analysis), load capacitance equal to 33.442 fF (PDK de-
fault) and supply voltage equal to 1.8 V. 

We analysed the hardware performance of the BFILM 
multiplier in terms of power, area, delay, and power-
delay-product (PDP) and compare it with the exact 
bfloat16 multiplier. Table 1 shows that the BFILM mul-
tiplier outperforms the exact multiplier in all hardware 
metrics; its energy consumption estimated through 
PDP is even more than five times smaller.

Table 1: The synthesis results for the examined multipliers.

Multiplier Delay 
[ns]

Power 
[uW]

Area 
[um2]

PDP 
[fJ]

exact bfloat16 2.89 869 6120 2590
BFILM 1.67 298 3796 498

Figure 2: The circuitry of the ILM core.

Figure 3: The circuitry of the approximate mantissa 
multiplier.
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Table 2 compares hardware characteristics of the state-
of-the-art variable-accuracy bfloat16 multipliers. The 
results are given as relative values to the standard refer-
ence implementations of the exact bfloat16 multiplier. 
The BFILM multiplier, with its very slim design, outper-
forms the recently proposed BFLP16-prop multiplier 
[15] in all aspects.

Table 2: Comparison of the bfloat16 multipliers regarding 
hardware gains relative to the exact bfloat16 multiplier.

Multiplier Delay 
[%]

Power 
[%]

Area 
[%]

PDP 
[%]

exact bfloat16 100 100 100 100
BFLP16-prop [15] 104 58 81 59
BFILM 58 33 62 19

Since the BFILM multiplier does not require reconfigura-
tion or additional hardware for more accurate processing, 
the multiplier’s size (area) and power are preserved for an 
arbitrary number of the ILM steps. Of course, with the ad-
ditional ILM steps, it is necessary to observe that residua rx 
and ry must be multiplied once or twice and added to the 
final product. Therefore, in this case, the processing time 
required to calculate the product increases linearly with 
the number of the ILM steps and thus does also the ener-
gy consumption. We assess different configurations of the 
BFILM multiplier in terms of delay, energy consumption 
(PDP) and the mean relative error distance (MRED), and 
present them in Table 3. For easier comparison, the delay 
and energy consumption are given relative to the values 
of the exact bfloat16 multiplier.

The proposed multiplier with two or three ILM steps has 
a lower energy consumption than the exact bfloat16 
multiplier and the BFLP16-prop multiplier [15]. More-
over, the BFILM multiplier with two ILM steps is not 
much slower than the state-of-the-art BFLP16-prop 
multiplier [15]. However, the BFILM multiplier with only 
one ILM step has a rather large error, which with two 
ILM steps comes close to the BFLP16-prop multiplier’s 
MRED, and then drops by order of magnitude with 
each additional ILM step.

Table 3: Comparison of delay, PDP, and the MRED er-
ror for the different number of ILM steps in the BFILM 
multiplier.

Multiplier Delay 
[%]

PDP 
[%]

MRED 
[10-3]

exact bfloat16 100 100    0
BFLP16-prop [15] 104 59 3.50
BFILM, 1 ILM step 58 19 91.21
BFILM, 2 ILM steps 115 38 9.08
BFILM, 3 ILM steps 173 58 0.86

These results suggest that the BFILM multiplier should 
fit well with error-resilient applications where low-ener-
gy consumption is an important goal and where most 
of the time the BFILM multiplier with a small number of 
ILM steps could be used. An important feature of the 
BFILM multiplier is that we can control the product ac-
curacy by adjusting the number of ILM steps without 
hardware modification, ultimately leading even to re-
moving the exact multiplier from the circuitry.

3.2 Impact on neural network learning

Convolutional neural networks achieve remarkable 
performance in visual recognition tasks [24]. However, 
the learning and inference of convolutional neural net-
works are computationally demanding tasks that in-
volve many multiplications. Nevertheless, convolution-
al neural networks are error-tolerant models, making 
them perfect candidates for employing approximate 
multipliers. Therefore, we assess the influence of the 
proposed multiplier on the performance of the infer-
ence and learning phases.

To evaluate the BFILM multiplier, we select the 
ResNet-20 convolutional neural network [25-26] and 
the CIFAR-10 dataset [27]. We change the number rep-
resentation in the ResNet-20 convolutional neural net-
work from the single-precision floating-point format 
to the bfloat16 format. In the experiments, we use the 
Caffe framework [28], where we replace the calls to the 
cuBLAS multiplication routines with the calls to our 
own GPU kernels, which emulate the proposed BFILM 
multiplier.

The neural network learns using the predetermined 
split of the dataset to train and test sets [27]. Before 
learning, we preprocess the images by subtracting 
their mean value. Besides, we quantify the ResNet-20 
single-precision floating-point weights to the bfloat16 
format representation by simply discarding the last 
16 bits of the floating-point mantissa. In the learning 
phase, we optimize the multinomial logistic loss func-
tion [29] with the Nesterov momentum algorithm [30]. 
The learning starts with randomly initialised weights. In 
all experiments, we train the network for 64000 epochs.

In the first experiment, we evaluate the influence of the 
proposed multiplier on the ResNet-20 classification ac-
curacy. As the BFILM multiplier is configurable in terms 
of the number of steps affecting the multiplication er-
ror, we test several BFILM configurations. In the tested 
configurations, BFILM-1-1, BFILM-1-2, BFILM-2-2 and 
BFILM-2-3, the first number denotes the number of ILM 
steps in the inference phase, while the second number 
denotes the number of ILM steps used in the learning 
phase.

R. Pilipović et al.; Informacije Midem, Vol. 53, No. 2(2023), 79 – 86



84

Table 4 shows the classification accuracy of the 
CIFAR-10 dataset. For each configuration, we list the av-
erage value and standard deviation over five runs. Sig-
nificant multiplication error of BFILM-1-1 leads to low 
classification accuracy. Increasing the number of the 
ILM steps in the inference and learning phase improves 
classification accuracy. For example, with BFILM-2-2 
and BFILM-2-3, the classification accuracy is almost the 
same as with the exact bfloat16 multiplier.

Table 4: Performance of the ResNet-20 convolutional 
neural network on the CIFAR-10 dataset using bfloat16 
multipliers.

Multiplier Test set classification accuracy [%]
exact bfloat16  91.50 ± 0.10
BFILM-1-1  86.32 ± 1.26
BFILM-1-2  90.98 ± 0.15
BFILM-2-2  91.30 ± 0.30
BFILM-2-3  91.40 ± 0.20

Also, we can see from the results for BFILM-1-1 and 
BFILM-1-2 that increasing the number of the ILM steps 
in the learning phase positively affects classification 
performance. On the other hand, a further increase 
in the number of steps in the inference phase from 
BFILM-1-2 to BFILM-2-2 has much less impact. Moreo-
ver, according to Table 3, BFILM-1-2 has a very small 
energy footprint and thus could be sufficient for neural 
network inference and learning.

The second experiment highlights the advantage of the 
on-the-fly accuracy adaptation of the BFILM multiplier, 
which can help in faster and more energy-efficient neu-
ral network learning. The idea is to start with one ILM 
step in the inference and learning phase to save energy 
and later, when model performance improves, increase 
the number of the ILM steps to further refine the result.

Fig. 4 shows the outcome of the learning process on 
the training and testing set for five separate runs, each 
with randomly initialised neural network weights. For 
the loss (red) and the accuracy (green), we show the 
span of obtained values and the curve averaged over 
all runs. We see that with the BFILM-1-1 configuration, 
the model improves rapidly and reaches a classification 
accuracy of more than 60 % in only 10000 epochs. At 
this point, we use an additional ILM step in the learning 
phase (BFILM-1-2) to improve the model’s convergence 
and achieve more than 99.4 % of the accuracy of the 
exact bfloat16 multiplier. However, if the accuracy still 
needs to be increased for some applications, we can 
enhance the model by training it with additional ILM 
steps.

Figure 4: Varying configuration of BFILM during the 
learning phase.

4 Conclusion

In this paper, we proposed a novel approximate 
bfloat16 multiplier with adjustable accuracy, which can 
be achieved without any hardware reconfiguration. 
Instead, the proposed BFILM multiplier iteratively uses 
an approximate logarithmic multiplier core to reduce 
the error. This way, we avoid using additional error re-
finement circuits, keeping the design small and energy 
efficient. The primary purpose of the proposed design 
is to use it in deep neural network processing in the in-
ference and learning phases. We apply the BFILM multi-
plier in the ResNet-20 convolutional neural network to 
classify the CIFAR-10 dataset. We demonstrate the im-
pact of various BFILM configurations on the neural net-
work learning process and classification accuracy. The 
results show that we can easily adjust the multiplier’s 
accuracy according to the application’s requirements. 
The main advantage of the on-the-fly adaptation of the 
BFILM multiplier comes to expression during the learn-
ing phase. The results prove that we can start with one 
ILM step in the inference and learning phase to save 
energy and later, when model performance improves, 
increase the number of the ILM steps to refine the re-
sult further. In future work, we aim to develop an algo-
rithm that could optimize the learning process in terms 
of speed and efficiency by automatically adapting the 
ILM steps to the BFILM multiplier when needed.
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