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Abstract: The application of Radio Frequency Identification (RFID) technology for localizing and tracking mobile objects within indoor 
environments, primarily relying on Received Signal Strength Indicator (RSSI) readings, poses challenges in enhancing tracking accuracy 
and minimizing errors. In response, we present the VIRALTRACK (Virtual Reference Tag Localization and Tracking) model, comprising 
four key processes: signal improvement, optimization-based virtual reference tag allocation, quantum-based localization, and deep 
reinforcement learning-based tracking. The Extended Gradient Filter (EGF) algorithm is introduced to mitigate RSSI fluctuations, 
thereby enhancing signal efficiency. The Emperor Penguin Colony (EPC) optimization algorithm allocates virtual reference tags, 
factoring in Signal-to-Noise Ratio (SNR), tag quantity, and environmental conditions, elevating tracking accuracy. Quantum Neural 
Network (QNN) facilitates precise position estimation for moving targets, with the SignRank algorithm optimizing virtual reference tag 
selection to reduce tracking errors. The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm ensures effective tracking 
by considering distance, phase, orientation, and previous coordinates. Simulations conducted using the NS3.26 network simulator 
evaluate performance metrics, including tracking accuracy, tracking error, and cumulative probability, validating the efficacy of the 
proposed VIRALTRACK model in RFID-based indoor localization and tracking. 

Keywords: Radio Frequency Identification (RFID), Virtual Reference Tag Allocation, RFID reader, Quantum Neural Network (QNN), 
Extended Gradient Filter (EGF)

Radiofrekvenčna identifikacija, lokalizacija in 
sledenje s pomočjo virtualne referenčne oznake z 
uporabo tehnik umetne inteligence v notranjem okolju
Izvleček: Uporaba tehnologije radiofrekvenčne identifikacije (RFID) za lociranje in sledenje mobilnih predmetov v notranjih okoljih, 
ki temelji predvsem na odčitkih indikatorja moči sprejetega signala (RSSI), predstavlja izziv pri izboljšanju natančnosti sledenja in 
zmanjšanju napak. V odgovor na to predstavljamo model VIRALTRACK (Virtual Reference Tag Localization and Tracking), ki vključuje štiri 
ključne postopke: izboljšanje signala, dodeljevanje virtualnih referenčnih oznak na podlagi optimizacije, lokalizacijo na podlagi kvantne 
metode in sledenje na podlagi globokega učenja z okrepitvijo. Uveden je algoritem EGF (Extended Gradient Filter), ki ublaži nihanja 
RSSI in s tem izboljša učinkovitost signala. Optimizacijski algoritem Emperor Penguin Colony (EPC) dodeljuje virtualne referenčne 
oznake ob upoštevanju razmerja med signalom in šumom (SNR), količine oznak in okoljskih pogojev, kar povečuje natančnost sledenja. 
Kvantno nevronsko omrežje (QNN) omogoča natančno ocenjevanje položaja premikajočih se ciljev, algoritem SignRank pa optimizira 
izbiro navideznih referenčnih oznak, da zmanjša napake pri sledenju. Algoritem TD3 (Twin Delayed Deep Deterministic Policy Gradient) 
zagotavlja učinkovito sledenje z upoštevanjem razdalje, faze, orientacije in prejšnjih koordinat. Simulacije, izvedene z omrežnim 
simulatorjem NS3.26, ocenjujejo kazalnike učinkovitosti, vključno z natančnostjo sledenja, napako sledenja in kumulativno verjetnostjo, 
kar potrjuje učinkovitost predlaganega modela VIRALTRACK pri notranji lokalizaciji in sledenju na podlagi RFID.

Ključne besede: Radiofrekvenčna identifikacija (RFID), dodeljevanje virtualnih referenčnih oznak, bralnik RFID, kvantno nevronsko 
omrežje (QNN), razširjeni gradientni filter (EGF)
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1 Introduction 

Automatic localization and tracking technologies have 
garnered significant attention, driven by the increasing 
prevalence of location-based applications. This is par-
ticularly crucial in scenarios such as logistics manage-
ment and construction worker supervision, where real-
time indoor localization and tracking of moving targets 
play a pivotal role. The conventional Global Positioning 
System (GPS) faces limitations in indoor tracking due 
to issues such as signal blocking and non-line-of-sight 
conditions [1-3]. As a result, Radio Frequency Identifi-
cation (RFID)-based tracking technology has emerged 
as a promising solution, showcasing adaptability to 
large-scale indoor environments and effectiveness 
in non-line-of-sight conditions [4-5]. In the realm of 
RFID-based tracking systems, the fundamental com-
ponents include RFID tags and readers. RFID read-
ers are employed to collect Received Signal Strength 
Indicator (RSSI) information from moving target tags, 
fostering communication and enabling the localization 
and tracking of the target within indoor environments 
[6-7]. Indoor localization using RFID technology can 
be categorized into range-free and range-based ap-
proaches [8]. The former utilizes connection informa-
tion like hop size and anchor position, while the latter 
incorporates distance estimation between the trans-
mitter and receiver for communication [9-10]. Range-
based approaches have demonstrated superiority in 
large-scale scenarios, leveraging precise tag selection 
based on RSSI [11]. RFID tags are classified into pas-
sive, semi-active, and active categories. Passive RFID 
tags derive power from the electromagnetic field and 
lack an internal power supply, whereas semi-active 
tags receive power for internal circuits and broadcast-
ing from the reader’s electromagnetic field. Active RFID 
tags have their power supply for both internal circuits 
and broadcasting, offering long-range communication 
and superior tracking accuracy [15-16]. Despite ad-
vancements, existing tracking algorithms, such as the 
Hidden Markov Model (HMM) and linear regression-
based approaches, exhibit high tracking errors in in-
door environments [17-18]. This motivates the need for 
further research to enhance tracking accuracy and re-
duce localization errors in RFID-based indoor tracking 
systems. The proposed research aims to address these 
challenges through a multi-faceted approach. Four key 
processes are formulated to achieve the overarching 
objective of improved tracking accuracy:
1.  Signal Improvement: Mitigating RSSI signal fluc-

tuations arising from multipath effects and inter-
ference in indoor environments.

2.  Optimization-based Virtual Reference Tag Alloca-
tion: Strategically allocating virtual reference tags 
to optimize tracking accuracy.

3.  Quantum-Based Localization: Leveraging quan-
tum-based techniques to enhance the precision 
of initial target tag localization.

4.  Deep Reinforcement Learning-Based Tracking: 
Employing deep reinforcement learning for dy-
namic tracking in real-time indoor environments.

Existing RFID-based tracking systems grapple with is-
sues such as interference, signal-blocking, and low po-
sitioning accuracy. The proposed research aims to con-
tribute to the refinement of indoor tracking systems, 
addressing these challenges and enhancing tracking 
accuracy. The subsequent sections delve into each 
formulated process, discussing methodologies, chal-
lenges, and potential contributions to the field. Fig. 1 
represents the general RFID tracking system.

Table 1 represents the notation and description used in 
our proposed VIRALTRACK model.

Table 1: Notation and its description

Notation Description
TXp The transmission power of the source 

device
RXp The remaining power of the wave at the 

receiver
RXg value of receiver gain
TXg transmitter gain

λ wavelength
d distance between the source and the 

destination
Vt Virtual reference tag
Rt Reference tag
r2 Distance from the reference tag in the 

grid
SVt The signal intensity of the virtual refer-

ence tag
SRt The initial signal intensity of the reference 

tag
y Distance factor
ρ Humidity
K Temperature

WVt Weight value between the input layer and 
hidden layer

μt The threshold value of t th  hidden neuron
μt sigmoid function

Discount factor
TRP True positive rate

 Number of identified virtual reference tag

The total number of virtual reference tags.

This paper introduces the VIRALTRACK model, a novel 
RFID localization and tracking system designed for in-
door environments, incorporating advanced artificial 
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intelligence techniques. The key contributions of this 
research encompass several innovative components. 
Firstly, the Extended Gradient Filter (EGF) is proposed 
to effectively mitigate the impact of noise-induced RSSI 
fluctuations. Secondly, an optimization-based strategy 
for virtual reference tag allocation is introduced, utiliz-
ing the Emperor Penguin Colony (EPC) algorithm. This 
approach optimizes the number of virtual tags by con-
sidering factors such as Signal-to-Noise Ratio (SNR), tag 
quantity, and environmental conditions like tempera-
ture and humidity, ultimately enhancing tracking accu-
racy. The third contribution involves Quantum-based 
localization, where the position estimation is achieved 
through a Quantum-Inspired Neural Network (QNN). 
The SignRank algorithm is proposed to select the op-
timal virtual reference tag within specific grids, aiming 
to reduce errors during tracking. Lastly, deep reinforce-
ment learning-based tracking is presented, employing 
the Twin Delayed Deep Deterministic Policy Gradient 
(TD3) algorithm. This method takes into account vari-
ous parameters, including distance, phase, orientation, 
and previous coordinates, leading to a substantial im-
provement in tracking accuracy within indoor envi-
ronments. The proposed VIRALTRACK method is thor-
oughly evaluated based on tracking accuracy, tracking 
error, and cumulative probability, demonstrating its 
effectiveness in addressing challenges associated with 
RFID localization and tracking in indoor settings.

2 Literature survey

In the realm of indoor object tracking for e-health ap-
plications, Radio Frequency Identification (RFID) tech-
nology has emerged as a prominent solution, as evi-
denced by various proposals in the literature. One such 
proposition by Author [21] advocates for the use of ul-
tra-high frequency RFID to facilitate tracking and man-
agement of mobile tags within indoor environments, 
particularly emphasizing its application in hospitals. 
This system relies on signal information exchanged be-

tween RFID readers and tags, with a focus on utilizing 
received signal strength for precise localization of pa-
tients and medical items. Meanwhile, Author [22] pro-
poses an indoor tracking system that integrates RFID 
information with Inertial Measurement Unit (IMU) data. 
Although the system employs the unscented Kalman 
filter algorithm based on Received Signal Strength In-
dication (RSSI) data, its limitations in non-Gaussian en-
vironments are acknowledged.

In an attempt to address challenges associated with 
RFID-based tracking, innovative methods are explored. 
Author [23] introduces a spinning antenna-based sys-
tem, employing three key pieces of information—RSSI, 
Doppler frequency, and phase—for localization. Nota-
bly, preprocessing steps are incorporated to eliminate 
signal noise, enhancing the accuracy of object locali-
zation. On a different front, the work of Author [24] 
focuses on medical equipment tracking within indoor 
spaces, utilizing RFID tag information to ascertain the 
location of each piece of equipment. Moreover, ef-
forts have been made to enhance indoor positioning 
algorithms, as seen in Author [25]’s work, which in-
corporates the LANDMARK algorithm and K-Nearest 
Neighbor (K-NN) algorithm for RFID tags. However, 
challenges are noted in the initial parameter selection 
for K-NN, which impacts the system’s effectiveness in 
indoor positioning scenarios.

Various strategies are proposed to compensate for 
signal loss and improve accuracy in RFID-based track-
ing. Author [26] introduces a compensating signal 
loss-based RFID system, leveraging a filter to mitigate 
ambiguity in gathered information and employing a 
triangulation algorithm for object localization. Similar-
ly, Author [27] integrates robust support vector regres-
sion and Kalman filter algorithms in a reference tag-
supported RFID system to track moving objects, with 
the Kalman filter serving to eliminate RSSI fluctuations 
from the received signal. Despite the effectiveness of 
the system, concerns are raised about the time con-
sumption of the support vector regression algorithm, 
impacting overall tracking accuracy. In the pursuit of 
efficient tracking in indoor environments, Author [28] 
presents a model with noise-filtering mechanisms for 
mobile targets. The system’s design includes pre-filter 
and post-filter components in RFID tags to enhance 
the tracking process. Moreover, real-time tracking so-
lutions utilizing passive RFID tags and low-frequency 
transmission are explored by Author [29], underscoring 
the practical deployment of four passive RFID tags on 
each moving object for accurate tracking within indoor 
environments.

The advancement of localization methods extends 
to the use of complex algorithms such as the particle 

Figure 1: RFID tracking system
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filter, laser ranging model, and Density-Based Spatial 
Clustering of Application with Noise (DBSCAN) algo-
rithm, as proposed by Author [30]. The intricacies of 
tracking are further addressed by Author [31], who 
introduces an active RFID-based moving target predic-
tion system. This system utilizes virtual reference tags 
and a linear regression model to effectively track mov-
ing objects within indoor locations. Meanwhile, the 
paradigm shifts in tracking strategies with device-free 
systems, as illustrated by Author [32], who employs the 
Hidden Markov Model (HMM) algorithm for trajectory 
estimation of moving objects. Furthermore, the paper 
by Author [33] introduces a differential received signal 
strength-based tracking system for construction equip-
ment within indoor environments, utilizing four RFID 
readers and signal information from mobile target tags 
at different positions for precise tracking. A range-free 
indoor tracking algorithm is also proposed by Author 
[34], leveraging methods such as Framed Slotted Aloha 
and Tree Walking algorithms. However, concerns arise 
regarding the lack of noise removal in this approach, 
potentially affecting the accuracy of mobile object 
tracking. Finally, Author [35] proposes an indoor mo-
bile target tracking solution using the multi-direction 
weight position Kalman filter, which integrates Gauss-
ian weight computation and velocity estimation to re-
move RSSI fluctuations and noise interference, thereby 
enhancing overall tracking accuracy in indoor environ-
ments. These diverse approaches collectively contrib-
ute to the evolving landscape of RFID-based indoor 
tracking systems, each addressing specific challenges 
and pushing the boundaries of accuracy and efficiency 
in different applications.

3 Problem statement

In the realm of RFID indoor tracking, researchers grap-
ple with persistent challenges in enhancing tracking 
accuracy and minimizing errors. The proposed track-
ing model, denoted as Tm, introduces a comprehensive 
approach where ‘m’ signifies the moving object, and 
‘P’ designates the indoor position based on an RFID 
reader’s specific location [36]. Existing studies reveal 
several issues; for instance, an optimization algorithm 
for unconstrained indoor tracking struggles with effi-
cacy in the face of increased RFID tag interference. This 
algorithm relies solely on the distance parameter, ne-
glecting crucial phase, location, and orientation infor-
mation, thus diminishing tracking accuracy [36].

 � �� � � � � �� �1 2 1{ , , ., | . . }m n n n m n n mT m P P P P P L P t P t�� � � � � �

Another set of challenges arises in a semi-active RFID 
system that encounters difficulties due to inadequate 

noise removal and the dependence on triggers for sig-
nal transmission [37]. Additionally, the limitation of a 
single RFID reader poses challenges in effectively track-
ing multiple mobile targets [37]. These issues persist in 
data-driven approaches, like the KNN-HMM algorithm, 
which grapples with complexities in initial parameter 
selection and time consumption, ultimately dimin-
ishing tracking accuracy [38]. Similarly, passive RFID-
based real-time tracking systems face particle filter-
related challenges, including particle degradation and 
sample depletion, particularly in non-Gaussian envi-
ronments [39]. Moreover, the utilization of passive RFID 
tags introduces constraints related to power resources 
and real-time tracking feasibility [39].

In a distinct approach, an indoor positioning system re-
lying on the support vector regression algorithm con-
tends with challenges stemming from ineffective noise 
removal mechanisms, reduced localization accuracy 
due to excessive reference tags, and prolonged pro-
cessing times [40]. These collective challenges under-
score the need for innovative solutions to enhance the 
robustness and precision of RFID-based indoor track-
ing systems [40].

4 Viraltrack system model

In our proposed work, we confront the pervasive chal-
lenges inherent in existing indoor mobile object track-
ing systems. The architecture of our devised system 
encompasses five pivotal components: RFID readers, 
real reference tags, virtual reference tags, target tags, 
and a centralized server. Opting for active RFID tags, 
we leverage their extended communication range 
and independence from power sources, drawing an 
advantage for enhanced performance. Our conceptu-
alization adopts a 3D grid configuration, recognizing 
the efficacy of real-time indoor tracking within a three-
dimensional spatial context. To strategically deploy our 
system, we position four RFID readers in the ceiling of 
the indoor environment, complemented by a singular 
real reference tag allocated to each grid. Our primary 
objective revolves around augmenting tracking accu-
racy and curbing localization errors within the indoor 
setting. The procedural framework of the proposed VI-
RALTRACK system is illustrated in Fig. 2.

The first critical process in our framework is signal im-
provement, where we introduce the Extended Gradi-
ent Filter (EGF) algorithm. This algorithm operates by 
effectively minimizing fluctuations in Received Signal 
Strength Indicator (RSSI), thereby enhancing signal sta-
bility and, consequently, improving tracking accuracy. 
The second process revolves around optimization-
based virtual reference tag allocation. Here, we em-
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ploy the Emperor Penguin Colony (EPC) optimization 
algorithm to strategically assign virtual reference tags, 
addressing interference issues associated with real 
reference tags in the RFID tracking system. By optimiz-
ing the allocation of virtual reference tags, we elevate 
tracking accuracy.

The third pivotal process introduces quantum-based lo-
calization, incorporating the Quantum Neural Network 
(QNN). This quantum-inspired approach accelerates 
initial position estimation, leading to optimal results 
in moving object localization. By leveraging quantum 
principles, we navigate challenges associated with con-
ventional methods, reducing errors during the tracking 
process. The final process employs deep reinforcement 
learning-based tracking, employing the Twin Delayed 
Deep Deterministic Policy Gradient (TD3) algorithm. 
This algorithm harnesses RFID reader information to 
accurately track moving target tags, contributing to a 
comprehensive solution for increased tracking accu-
racy within the indoor environment.

In summary, our VIRALTRACK model integrates these 
four processes cohesively, culminating in a robust sys-
tem that adeptly addresses the intricacies of indoor mo-
bile object tracking, demonstrating enhanced tracking 
precision and reduced localization inaccuracies.

Figure 2: Proposed VIRALTRACK System model

4.1 Signal improvement

The primary process in our work is a signal improve-
ment since the indoor environment is highly affected 
by the multipath effects, dead spots and interference. 
These issues increase the noises in the received RSSI 
signal. RSSI is a good indicator to predict the unknown 
node’s current position. RSSI is an estimation of dBm, 
which is 10 times the logarithm of the power ratio p 
at the receiving end and the reference power pr. This 
value is inversely proportional to the square of the dis-

tance. Hence, our work employs the EGF algorithm to 
effectively remove the RSSI fluctuations caused by the 
noise. The reason for selecting this algorithm is that 
it performs better in multipath conditions. Besides, it 
performs better than traditional algorithms such as the 
Kalman filter. 

In addition to RSSI, we evaluate the link quality evalu-
ator (LQI) that measures the position by beacon mes-
sage transmission. The low and high-frequency ranges 
of RSSI and LQI can be followed: -75dBm and -25dBm 
for low RF and high RF and 105 for low RF, and 108 for 
high RF, respectively. A good measurement or estima-
tion of RSSI is required to understand the target posi-
tions. When the distance increases, then the RSS value 
get decreases, and it’s formulated as follows: 

 � � 10 1 0RSSI nlog d A�� �    (1)

Where n represents the constant variable for signal 
propagation, also called 

To measure the distance between the reference tags to 
the RFID readers, the following distance is computed 
as follows, 

 � � � �/ 10 10 1
 
RSSI A n

Distance
S

� � �
�  (2)

Then, measures the signal attenuation factor by the fol-
lowing equation, 

 

� �
 

10 log10 1

RSSI AN
sd
�

�
� �

   (3)

The computation of RSS is that transmission power is 
configured in the transmitting device TX and receiving 
distance RX with power. Based on the Friis Free Space 
Transmission Model, the RSS value decreases as the 
distance of the source device, which is formulated as 
follows, 

 2

4p p g gRX TX TX RX
d
�
�

� �� � � � �
� �

  (4)

Where TXp is the transmission power of the source 
device, RXp is the remaining power of the wave at the 
receiver, RXg is the value of receiver gain, TXg Is the 
transmitter gain, λ is the wavelength, and d  represents 
the distance between the source and the destination. 
Then, the RSS value is transformed into the RSSI, which 
describes the received power of the reference power. Pr  
and the absolute value of Pr Is 1? mW. The RSSI value is 
computed as follows, 
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� �10* p

p

RX
RSSI log RSSI dB

RF
� �   (5)

However, the increased received power result shows 
a higher value of RSSI and the relationship between 
the RSSI and received signal power is measured, and 
the distance d is inversely proportional to the RSSI and 
the ideal distribution of RXd Is not applicable. Further, 
the radio signal’s propagation is interfered with many 
influencing effects. A set of RSSI values computes a 
mean value of RSSI, and the few packets are required 
from each reference tag and RSSI over the time series is 
computed as follows, 

 

0

1 
i n

i
i

RSSI RSSI
n

�

�

� �     (6)

If the EKF is applied on the RSSI signals, the approxima-
tion is applied, i.e. a = 0.75 and the approach uses the 
large difference in RSSI values normalized. It is formu-
lated as follows, 

 (7)

The above equation means that the RSSI value cor-
responding to the signal strength over the distance 
is based on the past mean value and the currently 
obtained value of RSSI. Approximation technique is 
applied to EKF for signal quality enhancement which 
ranges between 0 and 1, and if the value is 0, then 
signal quality filtering is no performed. Otherwise, it’s 
executed optimally. In the following, we described the 
filtering of RSSI signals based on the obtained values of 
LQI and RSSI. 

The following equation performs the value of LQI-
based signal smoothing, 

 
� �� �

� � 11
LQI tRSSI t tnormalize a RSSI a RSSI �� � � � �  (8)

The fusion value of LQI and RSSI by the normalized RSSI 
can be as follows, 

� �� �
� � 11

Fusion tRSSI t tnormalize a RSSI a RSSI �� � � � �  (9)

Finally, the proposed normalization is executed by RS-
SIs and LQI values of recently measured are computed, 
and it’s executed by the following, 

 
� �� �

� � 11
Both tRSSI t tnormalize a RSSI a RSSI �� � � � �   (10)

Therefore, EGF is applied by normalization of LQI and 
RSSI values, and it is performed in Fig. 3

Figure 3: Conditions for Signal Quality Improvement

4.2 Optimization-based virtual reference tag allocation

Our work deploys virtual reference tags in indoor track-
ing to overwhelm the issues of real reference tags in the 
RFID tracking system. In our 3D grid network, we place 
one real reference tag in each grid. To reduce the inter-
ference created by the real reference tag. This is achieved 
by reducing the number of real reference tags via virtual 
reference tags. Here, the virtual reference tags are allo-
cated by the RFID reader node placed on the ceiling of 
the indoor environment. It allocates several virtual ref-
erence tags by exploiting the Emperor Penguin Colony 
(EPC) optimization algorithm. It performs faster than 
traditional optimization algorithms (GWO, PSO, ACO) by 
obtaining results within the four iterations. It considers 
the succeeding parameters to compute the fitness func-
tion: SNR, number of tags and environmental factors 
such as temperature and humidity; these parameters 
are collectively termed attributes. Since these two en-
vironmental factors affect the RSSI signal in the indoor 
environment, based on this information, the RFID reader 
allocates virtual reference tags for each grid it monitors. 
In EPC, the optimization is based on the heat transfer 
and attractiveness between the penguins. Similarly, the 
virtual reference tags are allocated based on the attrib-
utes in our process. Initially, the position of the virtual 
reference tag is plotted based on the distance from the 
reference tag, which can be formulated as,

2
t

t
RV
r

� (11)

Where Vt denotes the virtual reference tag, Rt denotes 
the reference tag and r2 denotes the distance from the 
reference tag in the grid. The interference is also con-
sidered and minimized to facilitate effective communi-
cation between the tags, which can be formulated as,

t t

y
V RS S e ���                    (12)

Where 
tVS denotes the signal intensity of the virtual 

reference tag, 
tRS  Denotes the initial signal intensity of 
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the reference tag, λ denotes the signal coefficient, and y 
denotes the distance factor, respectively. From this, the 
attractiveness G can be formulated as, 

 4 y
sG A K e ��� ��                   (13)

Where A denotes the surface area of the grid, δ denotes 
the connectivity factor, ρ denotes the humidity, and K 
denotes the temperature, which affects the received 
signals strength. The orientation of the spiral move-
ment of the penguin is represented as,

X axis= cos e��� �                    (14)

Y axis= sin e��� �                    (15)

1. Pseudo code: EPC algorithm
Initialization of population of tags;
Compute tag position;
Compute signal strength (S) function;
Determine reference tag position;
For iter = 1 to Maxiter do
    Compute repeat copies of tag population;
    For i=1 to k population, do
       For j=1 to k population, do
         If Sj < Si then
           Compute interference using eqn (12)
           Compute attractiveness using eqn (17)
           Compute spiral movement using eqn (14,15)
            Compute updation of position using eqn (19)
         End
       End
    End
Perform sorting and determine the best solution;
Update mutation factor;
Update signal coefficient;
end 

The two points separated by a distance in the search 
space are calculated, which is represented as,

D = 
 

2 2 2 2 2  
j

i

e e d
�

�� ��

�

� � � ���                    (16) 

The multiplication of distance and attractiveness is per-
formed to optimally allocate the position of the virtual 
reference tag, which can be expressed as,

� �

� �
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The new position of the penguin is computed by add-
ing the current position with the product of a random 
vector and mutation factor, which can be formulated 
as,

� �p P PU x y ��� �                    (19)

Where α, γ denote the mutation factor and random 
vector, respectively. This way of allocating the virtual 
reference tag increases the tracking accuracy and re-
duces the error involved in tracking the target tag. The 
pseudo-code of the proposed virtual reference tag al-
location is presented below.

4.3 Quantum based localization

To track the target moving tag, our work estimates its 
position by a localization process. For this, we execute 
Quantum inspired Neural Network (QNN) to esti-
mate the exact position of the moving target. To find 
the initial position of the target tag, the RFID reader 
considers the RSSI signal from the nearest virtual ref-
erence tag. QNN algorithm includes quantum compu-
tation and neural networks, improving the neural net-
work’s efficiency. QNN executes based on the quantum 
neuron model, representing the transition relationship 
between the quantum states and neuron states de-
rived from logic gates. This algorithm includes three 
layers input layer, hidden layer and output layer. Here 
RFID reader considers the RSSI signal for detecting the 
initial position of the target tag. RSSI signal information 
is considered as input, and the inputs are converted 
into a range value of quantum state [0,1] with range 

0,
2
π 

  
 and the calculation of the input layer is defined 

as follows,

                   (20)

                   (21)

Where n represent the number of neurons and Yn It is 
the nth input variable of the network, and the value of 

(17)

(18)
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n = 1. s
nX Represent the input of Quantum. The second 

layer is a hidden layer that represents the relationship 
between input and output that is defined as follows,

 � �h h
t tX F Z�                    (22)

                  (23)
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1 1

. . ( )
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w Z isin Z isin� �� � � �� (25)

Where, wtn Represent the weight value between the in-
put layer and hidden layer and μt Represent the thresh-
old value of t th hidden neuron. Substitute eqn (23) into 

eqn (25) and obtain h
tz  as defined as follows,
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Where each metric belongs to the tth neuron in the hid-
den layer and the value of t=1 and μt Represent the sig-
moid function.

The output layer provides the output for position pre-
diction that is defined as follows,

 � � 20 nZ Im x�                   (27)

 � �0 0 x F z�                     (28)
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(31)

Where, wt Represent the weight value and μ0 is repre-
sent the threshold value of the output neuron. Then 
substitute the eqn (30) into eqn (31) and obtain (μ0 ) as 
follows,

                (32)
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Where, z0 represent the output which is known as the 
optimal position for localization. To select the optimal 
virtual reference tag for localization, we proposed the 
SignRank algorithm. It ranks the virtual reference tag 
inside each grid based on its distance. The SignRank 
algorithm considered the weighted graph from the 
QINN, and it is defined as follows,

� �, ,G V B B� ��                   (33)

Where the value of  ij ijB andB+ −  are defined as follows,

 1,       
 

0,        ij

positivelink betweeni to j
B

No positivelink betweeni to j
� �
� �
�

           (34)

 1,        
0,        ij

negativelink betweeni to j
B

Nonegativelink betweeni to j
� �
� �
�

          (35)

This algorithm supposes an RFID reader randomly vis-
its the virtual references tag for localization. The RFID 
reader visits one neighbour’s virtual reference tag, then 
RFID has positive and negative sign values and the high 
positive value is denoted as rank one; based on these 
rank values, the virtual reference tag is selected for lo-
calization. This value is based on the distance of the vir-
tual reference tag. 

The positive and negative value is updated every time 
to select the optimal virtual tag. From the ranking, it se-
lects the optimal virtual reference tag for localization. 
Based on the selected RSSI signal received from the 
virtual reference tag and moving target tag, the RFID 
reader localizes the initial position of the moving target 
tag. This way of localizing the moving target position 
reduces the error during the tracking.
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2. Pseudo code: Quantum-based localization
INPUT: No. of virtual reference tags {vt1, vt2, ..vtn}, d
OUTPUT: Optimal virtual reference tag
Begin
Initialize {vt1, vt2, ..vtn}, RSSI signal
{
For each virtual reference tag {vt} do
Calculate weight value for every {vt}
End for
}
Optimal position is detected for localization
Take weighted graph (G) from QINN

        For every node i in G do
            For every neighbor j of node i do
            if (Bij+ == 1) then
                Select high positive rank node and set high 
                  rank using eqn(34)
                Optimal virtual reference tag is selected for 
                   localization
            else if (Bij- == 1) then
                Put a low rank for virtual reference tag using 
                 eqn(35)
            End If
        End For
    End For

4.4 Deep reinforcement learning based tracking

To track the moving target in the indoor environment, 
we propose the Twin Delayed Deep Deterministic Poli-
cy Gradient (TD3) algorithm, one of the deep reinforce-
ment learning algorithms. It is executed by the central-

ized server using the information acquired by each 
reader positioned in the indoor environment. It pro-
vides better results in tracking by learning the indoor 
environment effectually. Besides, it outperforms exist-
ing reinforcement learning algorithms. It utilizes subse-
quent parameters to track the moving target: distance, 
phase, orientation and previous coordinates. By utiliz-
ing this information in tracking, our proposed method 
tracks the moving target tag effectually. The tracking of 
moving tags is modelled as a Markov Decision Process 
(MDP), which comprises attributes, namely state (S), ac-
tion (Å), reward (ℝ) and discount factor ( ). The state 
represents the state space of the system at a time (τ) 
upon which an action is performed by the agent. De-
pending on the action, the system receives a reward for 
each time step. The discount factor denotes the accep-
tance of current rewards over upcoming ones. The pol-
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(37)

Figure 4b: a) One target b) Two target c) Multi target

Figure 4a: Process of deep reinforcement learning-
based tracking
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icy refers to the selection of action by the agent, and an 
optimal policy is termed the policy of the agent, which 
achieves expected returns. In our tracking process, the 
state is defined as the current position of the moving 
target tag, which includes the attributes. The process of 
deep reinforcement learning-based tracking is repre-
sented in Fig. 4a, and Fig 4b represents the tracking po-
sition of the moving object, 4b.a represent one moving 
target, 4b.b represent two targets and 4b.c represent 
multi-target.

The action carried out by the DRL agent is tracking the 
location based on state attributes. The reward is gener-
ated based on how well the agent tracks the target tag. 
The implementation of tracking is formulated as,

                (38)

The value func-
tion on following the policy π (s) is termed as the ex-
pected return, which can be formulated as,

                  (39)

The actor module performs actions based on the cur-
rent state attributes. The actor module is trained ac-
cordingly to achieve the optimal policy. The loss ob-
tained in the actor module is formulated as,

                 (40)

Where f and Θ1 represent the parameters of the on-
line poly network and online Q value network, the critic 
module is incorporated to evaluate the actions taken 
by the actor module to achieve the optimal policy. The 
critic produces the Q value, which is improved by up-
dating the network parameters. The optimal Q-value 
function is represented as,

  (41)

Where, ˆiθ  and f′  Denotes the network parameters of 
the target Q-value network and target policy network. 
The reward that the agent can receive by taking an 
action Åj in the state Sj is denoted as ℝ(Sj , Åj). The loss 
function of the critic module can be formulated as,

                  (42)

The soft update is carried out to update target neural 
network parameters. Similarly, the minimization of the 
loss function lC  and maximization of the loss function 

lA It is carried out to perform the updation of online 
Q-value parameters and online policy network param-
eters, respectively. The updation processes can be for-
mulated as,

 � �
� � ˆ1ˆ ˆ
1t t

i t i t i

� � �

� � �

� � � ��
�

� � ��
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                   (43)

This facilitates the agent to achieve optimal policy. 
Thus improves the tracking accuracy in the indoor en-
vironment.

V. Experimental study

The performance of the proposed VIRALTRACK model 
is evaluated, and simulation results are discussed. This 
section includes three subsections: simulation setup, 
comparative analysis and research summary. 

4.5 Simulation  setup

We design a 3-D grid network topology that includes 
four RFID readers, one centralized server, sixteen real/
phy reference tags, thirty-two virtual reference tags, 
and one target tag. The proposed VIRALTRACK model is 
experimented with in 300 x 400 m simulation environ-
ment for RFID localization and tracking using intellec-
tual techniques in the indoor environment. The simu-
lation parameters are shown in Table 3. The system 
configurations are illustrated in Table 2.

Table 2: System specifications

Hardware  
Specification

Hard Disk 500GB
RAM 4GB
Network  
Simulator

NS3.26

Software  
Specification

Operating  
System

Ubuntu 14.04 LTS

Table 3: Simulation parameters

Parameters Value
Network Parameters

Area of simulation 300×400m
Topology 3D Grid network 
RFID reader 4
Centralized server 1
Real/Phy reference tag 16
Virtual reference tag 32
Target tag 1
Channel frequency 915MHz
Fading No
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Inference of Inter channel No
Data rate 2 Mbps
SNR-based signal reception 10
The transmission power of RFID -45 dBm
Read range 1.62 m
Range of sensing 5.4 m
Range of inference 7.1m
Number of nodes 50
Control channel frequency 930 MHz
Radio Rx Sensitivity -91 dBm
Sensitivity reader power -70dBm
Sensitivity tag power -17dBm
Transmission range 30m

Fig 5 represents the simulation environment of the 
proposed VIRALTRACK model, which considers the 3D 
grid topology. The proposed VIRALTRACK environment 
includes four RFID readers, one centralized server, 16 
real/phy reference tags, thirty-two virtual reference 
tags, and one target tag. 

Figure 5: Simulation Environment of proposed VIRAL-
TRACK model

And moving target with an RFID tag is also represented 
in the Fig. RFID readers have small coverage covering 
the number of virtual and reference tags. RFID reader 
is used to track the reference tags in an indoor environ-
ment.

Fig. 6 represents the target tag tracking process using 
the TD3 algorithm, performed by the centralized server 
by each reader positioned in the indoor environment. 
TD3 algorithm automatically learns the indoor environ-
ment and provides better tracking results, improving 
tracking accuracy. 

4.6 Use case

Indoor localization using RFID tags is predominantly 
used in smart home applications. The user’s location 
information is gathered to make precise decisions in 
many cases. The advantages of RFID systems, such as 
non-LOS readability, contactless communication, in-
creased data rate and security, have enabled its use in 
smart home applications. Further, the location infor-
mation of users in the smart home facilitates the indoor 
navigation of elder age and visually impaired users. 

Figure 7: Case diagram for an indoor scenario

Fig.7 depicts the use case diagram of RFID in the smart 
home in which the RFID reader is placed in the living 
room, which is responsible for tracking the location 
with the help of tags. The reference and virtual tags are 
placed in each room to transmit and receive radio sig-
nals with the moving target. For instance, the tags R1 
to R4 are placed in the living room, R5 is placed in the 
portico, R6 and R7 are placed in the bedroom, R8 in the 
toilet, R9 in the Pooja room, R10 and R11 in the dining 
room, R12 in the store room and R13 in kitchen. 

Figure 6: Target tag tracking process using TD3 algo-
rithm
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Table 4: RFID specifications

RFID model RC522
Type Active RFID
Frequency 902-928 MHz
Power source External source
Read rate 400 tags/sec
Read range 4 to 7 meters
Memory size 64 to 2052 bits
Transmission speed 19300 bps
Temperature operated -25o C to 55o C
Communication standard USB
Output power 0.70mW

The specifications of the RFID communication are pre-
sented in Table 4. The signals acquired from the moving 
target are initially improved by using EGF to remove 
the fluctuations. Further, the placement of virtual tags 
in the 3D indoor environment by implementing EPC, 
which considers SNR, temperature and humidity for 
optimal solution. The tracking error is reduced by per-
forming the initial localization of the moving target us-
ing the QNN model. Finally, the accurate tracking of the 
moving targets is performed by the centralized server 
using TD3.

4.7. Comparative analysis

This section evaluates the performance of the proposed 
VIRALTRACK model in terms of several performance 
metrics, such as tracking accuracy, tracking error and 
cumulative probability. From these performance met-
rics, we proved that our model work is better than ex-
isting models. The comparison analysis performs with 
the PSO-TRACK [36], MOIT [37] and proposed VIRAL-
TRACK model. 

4.7.1 Impact of tracking accuracy
This metric is used to evaluate the correctness of the 
proposed VIRALTRACK model. Tracking accuracy is cal-
culated concerning the number of tags. Fig 8 compares 
tracking accuracy for both proposed and existing mod-
els. The comparison result shows that the proposed VI-
RALTRACK achieves high accuracy compared to other 
methods. And we proposed Extended Gradient Filter 
(EGF) to remove noise and RSSI fluctuations, increasing 
the tracking accuracy. In our method, we proposed op-
timization-based virtual tag allocation, which is used to 
optimize the virtual reference tag by considering SNR, 
many factors that affect the RSSI signal. Based on these 
factors, the RFID reader allocated the virtual tags that 
increase the tracking accuracy. And also, the proposed 
work performs Quantum based localization which se-
lects the optimal virtual reference tag for localization. 
The optimal localization method increases the track-

ing accuracy and reduces the error during tracking. We 
proposed deep reinforcement learning-based tracking 
that learns the indoor environment and provides bet-
ter tracking results, increasing tracking accuracy. The 
existing method does not perform optimal localization 
and tracking, which reduces tracking accuracy. The 
proposed VIRALTRACK method achieves 20% high ac-
curacy than the MOIT method and 11% higher than the 
PSO-TRACK method. 

Figure 8: Tracking Accuracy vs. No. of Tags

Table 5 illustrates the numerical analysis of tracking ac-
curacy concerning the number of tags. The table presents 
the average value of tracking accuracy. From the numeri-
cal analysis, the proposed VIRALTRACK model achieves 
high accuracy compared to others. 

Table 5: Tracking accuracy (%) analysis

Method # of tags
VIRAL-TRACK 98.02 ± 0.5
PSO-TRACK 87.82 ± 1.0
MOIT 80.6 ± 1.5

4.7.2 Impact of tracking error
This metric evaluates the errors during tracking due to 
random localization, noise, and multipath effects in an 
indoor environment. If the tracking error is high, the 
system will achieve poor accuracy. The tracking error is 
calculated concerning SNR, number of tags and trajec-
tories. 

Fig 9a compares tracking error for proposed and ex-
isting models for several tags. The comparison result 
shows that the proposed VIRALTRACK model achieves 
low tracking error compared to existing models. Be-
cause our proposed work performs optimal virtual ref-
erence tag allocation, which is used to reduce the in-
terference created by the real reference tag. The virtual 
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reference tag is allocated by using Emperor Penguin 
Colony (EPC) algorithm, which optimally allocates the 
virtual reference tag, reducing tracking errors. 

Figure 9b: Tracking Error vs. No. of trajectories

Then we perform Quantum based localization, which 
selects the optimal virtual reference tag localization, 
reducing tracking errors. To reduce tracking error, we 
proposed a deep reinforcement learning algorithm 
that learns the indoor environment automatically and 
takes action based on the current status of the envi-
ronment, which reduces tracking error and increases 
tracking accuracy. The proposed VIRALTRACK model 
reduces by 15 cm lower than the MIOT model and 
13cm lower than the PSO-TRACK model for the number 
of tags. Similarly, Fig 9b represents the comparison of 
tracking error for the number of trajectories. The result 
shows that the proposed VIRALTRACK model achieves 
less tracking error than the existing model by perform-
ing optimal localization and deep reinforcement-based 
tracking. The proposed VIRALTRACK reduces 18cm less 
than the MIOT model and 14cm less than the PSO-
TRACK method. 

Fig 9c represents the comparison of tracking error for 
SNR. The Fig. clearly states that the proposed VIRAL-
TRACK model achieves less tracking error compared to 
the existing model by reducing the fluctuations of RSSI 

signal using the Extended Gradient Filter (EGF), which 
increases single strength and reduces tracking error. 
And the optimal virtual tag allocation considers the 
SNR for calculating fitness value, thus reducing track-
ing errors. The proposed VIRALTRACK method achieves 
13cm less than the MIOT model and 9cm less than 
the PSO-TRACK model. Table 6 illustrates the numeri-
cal analysis of tracking error, which shows the average 
value of tracking error for SNR, No. of tags and No of 
trajectories. From the numerical analysis, the proposed 
model achieves less tracking error than an existing 
model. 

Table 6:Tracking error (cm) analysis

Method SNR # of tags #of trajectories
VIRAL-
TRACK 4.9 ± 0.05 3.8 ± 0.05 4.46 ± 0.05

PSO-
TRACK 9.78 ± 0.10 8.8 ± 0.10 8.52 ± 0.10

MIOT 18.38 ± 
0.15 18.28 ± 0.15 22.42 ± 0.15

4.7.3 Impact of cumulative probability
This metric is used to evaluate the cumulative prob-
ability during tracking. It is calculated based on the 
target positioning of the RFID tag. And also it refers to 
the probability that measures the odds of two or more 
events happenings during RFID localization and track-
ing in an indoor environment. Fig 10 represents the 
comparison of the cumulative probability of proposed 
and existing methods for SNR. The Fig. shows that the 
proposed VIRALTRACK model achieves high cumula-
tive probability compared to existing works because 
our work achieves high probability for all four process-
es of RFID localization and tracking using intellectual 
techniques in an indoor environment. First, we pro-
posed EGF to remove RSSI fluctuations, thus increasing 
tracking accuracy, which increases the probability val-
ue of signal power. Second, we proposed optimization-

Figure 9a:Tracking error vs. No. of tags

Figure 9c: Tracking Error Vs. SNR
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based virtual reference tag allocation, thus increasing 
the allocation probability of virtual reference tags by 
reducing the tracking error. And third, we proposed 
Quantum based localization, thus increasing localiza-
tion accuracy and probability. Finally, we proposed 
deep reinforcement learning-based tracking, which 
reduces tracking error and increases tracking accuracy 
and probability. And the cumulative probability is cal-
culated by adding the four process probability values. 
The four processes achieve high probability, and then 
the cumulative probability also achieves high probabil-
ity compared to existing models. 

Figure 10: Cumulative Probability vs. SNR

Table 7 represents the numerical analysis of cumulative 
probability for SNR. The table illustrates the average val-
ue of cumulative probability. From the analysis, the pro-
posed VIRALTRACK model achieves 14% higher than the 
MOIT model and 8% higher than the PSO-TRACK model. 

Table 7. Cumulative probability (%) analysis

Method # of tags
VIRAL-TRACK 97.08 ± 0.5
PSO-TRACK 89.76 ± 1.0
MOST 83.6 ± 1.5

4.7.4 Impact of true positive rate
This metric is used to calculate the accuracy of the RFID 
tracking system. TRP represent the proportion of the 
number of correctly identified virtual reference tag to 
the total number of virtual reference tag. It is calculated 
as follows,

                   (44)

Where TRP represents the true positive rate,  repre-
sents the number of identified virtual reference tag and 
  represents the total number of virtual reference tags.

Fig 11 compares the true positive rate for the proposed 
and existing models for motion speed. The Fig. clearly 
states that the proposed VIRALTRACK model achieves a 
high true positive rate compared to an existing model. 
In our method, we reduce RSSI fluctuations, improving 
signal strength and tracking accuracy. And also, deploy 
the virtual reference tags in indoor tracking, which re-
duces the interference created by the real reference 
tag, thus increasing tracking accuracy and true positive 
rate. QINN-based localization is performed to detect 
the initial position of the target tag. Then reinforce-
ment learning-based tracking is performed to increase 
tracking accuracy, thus also increasing the true positive 
rate. In this way, we accurately track moving objects in 
an indoor environment, thus increasing the true posi-
tive rate. 

Figure 11a: True Positive Rate vs. Motion speed

Figure 11b: True Positive Rate vs. Number of tags

Similarly, Fig. 11b represents the comparison of the 
true positive rate for both the proposed and existing 
model for some tags. The Fig. shows that the proposed 
VIRALTRACK model achieves a high true positive rate. 
The value of the true positive rate is increased expo-
nentially with the increasing number of tags. The pro-
posed VIRALTRACK achieves a high true positive rate by 
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performing signal improvement, optimization-based 
virtual reference tag allocation, Quantum-based locali-
zation, and deep reinforcement learning-based track-
ing, which increases the true positive rate. 

Table 8: True positive rate analysis

Method Motion speed # of tags
VIRAL-TRACK 0.82 ± 0.001 0.82 ± 0.001
PSO-TRACK 0.62 ± 0.005 0.72 ± 0.005
MIOT 0.54 ± 0.015 0.58 ± 0.015

Table 8 represents the numerical analysis of the true 
positive rate for motion speed and number of tags 
for both the proposed and existing models. The table 
illustrates the average value of the true positive rate. 
From the numerical analysis, the proposed VIRALTRACK 
achieves a high true positive rate.

The VIRALTRACK model presented in this study dem-
onstrates superior performance compared to existing 
Radio Frequency Identification (RFID) localization and 
tracking models in indoor environments. The Extended 
Gradient Filter enhances received signals, significantly 
boosting tracking accuracy. An optimization-based 
virtual reference tag allocation minimizes interference 
from multiple real reference tags, further refining sys-
tem performance. Quantum Neural Network-based 
Localization accelerates initial position estimation, 
providing optimal results in moving object localiza-
tion. The Tracking and Detection Dimensional Deep 
Deterministic Policy Gradients (TD3)-based learning 
algorithm ensures accurate tracking of moving targets 
by leveraging RFID reader information. Through sig-
nal improvement, optimized tag allocation, quantum-
inspired techniques, and deep reinforcement learning, 
the VIRALTRACK model represents a notable advance-
ment in RFID-based localization and tracking, promis-
ing enhanced accuracy and adaptability in dynamic 
indoor settings.

5 Conclusion

This paper proposes VIRALTRACK, a novel system de-
signed for Radio Frequency Identification (RFID) lo-
calization and tracking within indoor environments. 
The primary objective is to enhance tracking accuracy 
and minimize errors during the tracking process. An 
innovative Extended Gradient Filter (EGF) algorithm 
is proposed to refine signal strength by reducing Re-
ceived Signal Strength Indication (RSSI) fluctuations. 
The deployment of virtual reference tags, managed 
by the Emperor Penguin Colony (EPC) optimization 
algorithm, addresses challenges associated with real 

reference tags in RFID tracking systems, ultimately 
augmenting tracking accuracy. The subsequent step 
involves target moving tag localization, employing a 
Quantum-inspired Neural Network (QNN) for precise 
position estimation and error reduction during track-
ing. The final stage incorporates a deep reinforcement 
learning-based tracking mechanism utilizing the Twin 
Delayed Deep Deterministic Policy Gradient (TD3). This 
comprehensive approach significantly enhances track-
ing accuracy within the specified environment. The 
VIRALTRACK model’s performance is evaluated based 
on tracking accuracy, tracking error, and cumulative 
probability, positioning it as a promising advancement 
in RFID-based localization and tracking. Future work 
aims to address the impact of moving target shadows 
on RSSI signal quality and explore multi-target localiza-
tion to further enhance overall efficiency.
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