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Abstract: Mobile Edge computing (MEC) enables network functions and control programmable and operates key constituents of 
social networks in terms of increasing user’s support on devices to carry out compute. It requires traffic offloading and task scheduling 
to improve the storage and fast computing.  In this paper, a novel method, including data driven traffic modeling enabled by a 
Reinforcement learning algorithm (RLTOA), is proposed for offloading traffic and improving the computing speed and minimizing the 
application latency of the social network. The result of the proposed data driven modeling is compared with existing methods and 
validate how the data driven traffic modeling for providing the computation offloading service in terms of energy budget and the 
mobile drop and execution of edge server. The presented computation offloading, and energy management solutions can provide 
valuable perceptions for practical applications of MEC. Extensive numerical findings are presented to endorse the efficacy of RLTOA 
and display the effect of the social network requirement.

Keywords: MEC; Reinforcement Learning; Traffic offloading; Task scheduling

Razbremenitev večuporabniških nalog za mobilno 
robno računalništvo na podlagi okrepljenega učenja 
Izvleček: Mobilno robno računalništvo (MEC) omogoča programiranje omrežnih funkcij in nadzora ter upravlja ključne sestavne 
dele družbenih omrežij z vidika povečanja podpore uporabnikom na napravah za izvajanje računalniških operacij. Za izboljšanje 
shranjevanja in hitrega računalniškega delovanja je potrebno razbremenjevanje prometa in načrtovanje nalog.  V članku je predlagana 
nova metoda, vključno z modeliranjem prometa na podlagi podatkov, ki ga omogoča algoritem okrepljenega učenja (RLTOA), za 
razbremenitev prometa in izboljšanje hitrosti računalniškega obdelovanja ter zmanjšanje zakasnitve aplikacij družbenega omrežja. 
Rezultat predlaganega modeliranja na podlagi podatkov so primerjani z obstoječimi metodami in potrjujejo modeliranje prometa na 
podlagi podatkov za zagotavljanje storitve razbremenitve računalniških operacij v smislu energijskega proračuna in mobilnega padca 
ter izvajanja robnega strežnika. Predstavljene rešitve za razbremenitev računalniških operacij in upravljanje z energijo lahko zagotovijo 
dragocene ugotovitve za praktične aplikacije MEC. Predstavljeni so obsežni numerični rezultati, ki potrjujejo učinkovitost RLTOA in 
prikazujejo učinek zahtev družbenega omrežja.

Ključne besede: MEC; okrepljeno učenje; razbremenitev prometa; načtovanje nalog 
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1 Introduction

Beyond 5G network (B5G) is assessed through the in-
tensive and sensitive applications through traffic and 
computation offloading by increasing computational 
capacity to the edge of B5G networks.  Reinforcement 

Learning (RL) can solve this problem using sparse and 
inaccurate network data. In this paper, we employ RL 
to develop an ideal task scheduling and computation 
offloading technique that reduces system energy us-
age. A framework for reinforcement learning based 
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edge computing is introduced in B5G networks for 
mobile edge computing (MEC) server for social re-
lated network applications and for battery-powered 
and resource-controlled devices [1]. In this paradigm, 
these social related delay-sensitive applications are 
shifted from resident users to nearby network edge 
server; edge computing is a promising technology to 
address the problem [2]. Since the processing capacity 
of these pervasive mobile edge servers are frequently 
constrained, offloading all work from devices to edge 
servers may, on the other hand, result in larger latency.
[3-5] Additionally, compute task offloading, particularly 
in 5G networks that are diverse and ultra-dense, can re-
sult in increased interference and unanticipated trans-
mission delays. On the other hand, local computing 
can considerably minimize the latency of job execution 
[6]. The contradiction is found between computation 
delay with energy consumption is essentially what de-
termines whether to execute tasks locally or offload 
them when creating an offloading strategy [7-9]. There 
are various algorithms focusing on minimizing the 
transmitted powers, and to maximize throughput [10].  
In the framework of the B5G network, computation 
complexity and task scheduling are handled by means 
of adding Small base stations (BS) as indoor base sta-
tions that have expanded significant attention [11]. 
Heterogeneous network (Hetnet) comprises of Macro 
BS (MBS) overlapped with small BS (SBS) and an auton-
omous power distribution is possible with the aid of 
RL. This heterogeneity structure offers features such as 
network data rate, connectivity, and energy efficiency 
[12-16]. In this B5G Hetnet, Co-operative and distribu-
tive learning outcomes optimization have been playing 
significant role in addressing energy related problem 
[17-22]. Many researchers suggested binary offload-
ing and partial offloading to adopt the system flexibly 
[23], the game-theoretic modeling and the quadratic 
programs are also implemented with non-convex opti-
mization. Then, the design concepts for B5G networks 
with MEC are different from those for MEC systems with 
SBS to minimize system energy consumption. A deep 
Q-Network (DQN) is based on the reinforcement learn-
ing working with deep neural networks, enabling more 
effective decision-making in complex MEC environ-
ments. Battery-powered device systems are preferable 
in B5G networks [24]. Collaborative design is important 
in task offloading since it is difficult to make decision 
on when to offload and when to execute, in this case, 
the key parameters are the CPU-cycle frequencies and 
time interval for execution [25]. The design goal is to 
minimize battery energy usage to optimize computa-
tion performance in contrast to MEC systems with bat-
tery-powered components. Along with these novel de-
sign considerations, managing the service constraints 
and the battery energy dynamics presents additional 
difficulties, this paper contributes to reduce the latency 

and computational cycle of MEC server using RL algo-
rithm. The key ideas of this research are as follows:
By jointly optimizing the offloading decision, compute 
the total computation capability, energy consumption, 
and battery energy. The co-operative problem is for-
mulated.

To optimize the traffic offloading process, the En-
hanced RL algorithm is introduced so that the decision 
making of task scheduling and computational speed 
is increased. In each time slot, the algorithm tries to 
optimize the CPU-cycle frequency and battery energy 
through trial and error.

To analyze and compare the simulated results with pre-
vailing algorithms reported with greedy allocation so 
as to impart the effectiveness of the proposed RL based 
MEC system

The articulation of proposed B5G MEC system is illus-
trated in Section 2 and figure 1. The experimental find-
ings and a comparison with the current approaches 
are discussed open in Section 3. The conclusion part is 
given in Section 4.

2 System methodology

MEC is an effective system to equip the management of 
mobile devices and is illustrated in figure 1. MEC serv-
er acts as a cloud head and runs a virtual machine of-
floading the computational task for edge mobile users. 
We consider the communication model consists of one 
macrocell and smallcells which are surrounded by the 
mobile devices and MEC server. The Euclidean distance 
between the macrocell and MEC server is defined as
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The channel gain between communication model is 
considered as free space path loss and is denoted as
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Frequency division multiple access serves the time in-
tervals between the MEC server and all users. The com-
plete bandwidth is divided into G smaller bands and 
each mobile device gets assigned B5G bands.[4] The 
signal-to-noise ratio (SNR) is calculated as
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where Pj,t is the transmit power of jth mobile edge de-
vice and μ specifies additive white Gaussian noise. The 
data rate of the MEC system is 
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Similarly, the optimality of MEC is a process to attain the 
best outcomes when the jth mobile device offloads the 
duty to the edge MEC server. It can effectively located in 
a fixed coordinates and denoted as  � �, ,0

EC
t EC ECw x y�

and the corresponding distance between jth mobile de-
vice and edge MEC server in time slot is represented as
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The channel gain is defined as
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G is denoted as the power gain and the Euclidean dis-
tance assumed as 5 meters. The data rate in the speci-
fied duration t is assumed as 
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Bu  is the total bandwidth and σ is the noise power.

Figure 1: Articulation of B5G MEC system

The articulation of the proposed B5G MEC system is 
shown in figure 1, It comprised of heterogeneous net-
work with small BS and Macro BS to the core network or 

MEC server. If the wireless backhaul is overloaded due 
to resource allocation, task offloading may suffer from 
high transmission delays. Task scheduling and compu-
tational offloading plays vital role in the backhaul com-
munication.

2.1 Task scheduling model

In this work, each mobile device has a computational 
task computed locally in the region of MEC server 
which deployed near the SBS in the time slot t. The 
computing decision action is assumed as  1

l
ja �  repre-

senting task is offloaded if it is  0
l
ja �  means the task is 

computed. Execution time and battery usage are used 
to differentiate between local and edge computing. 

2.1.1 Local computing
The computational ability is discriminated by means of 
the frequency cycle of CPU and is denoted as fh,K. The 
local task execution time is calculated using [5]
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where Lj,t is the CPU cycle essential to complete a task 
of the edge device. At the same time the energy con-
sumption for execution is given by

2
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The switched capacitance of the edge device is denot-
ed as K. we consider that k = 10-28 [11]. 

The inclusion of local execution time and energy con-
sumption results in the overall cost of task execution 
[5], 
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l�  are the weights to control over the comput-
ing phase.

2.2 Task offloading model

Task is offloaded when the computing resources are 
running out of memory, The task are of two types such 
as delay-sensitive and energy-sensitive which are vary-
ing with sizes and computational requirements. so the 
generated tasks are continuously dropped. The formu-
la for calculating transmission delay and energy con-
sumption are as follows,
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The effective switched capacitance kH and is set to the 
value of 10-28 Farad. We consider a high speed processor 
with a clock frequency of f = 2.4 GHz, the cycle length is 
derived from the clock frequency Lj,t = 1/f, which results 
approximately as 0.5 ns, using an effective switched 
capacitance value and clock cycle values, the energy 
consumption is calculated as 1 x 10-28 watts. Smart-
phones and Internet of Things end nodes are edge de-
vices that must adhere to strict energy constraints. The 
effective switched capacitance should be chosen to 
guarantee practical viability in energy models for low-
power processors. The theoretical extreme energy ef-
ficiency in computational modeling is reflected in this 
ultra-small power consumption estimate, especially in 
mobile edge computing scenarios with advanced na-
notechnology concerns. For this reason, in accordance 
with CMOS standards, we have selected the switching 
capacitance value 10-28 Farad as low as feasible on MEC 
energy consumption, particularly with task offloading 
and computational efficiency in order to stay consist-
ent with earlier benchmarks.

The computational delay of a task can be calculated us-
ing the sum of communication/transmission delay and 
the execution delay from MEC server to edge devices.

 , ,MEC MEC tx MEC exe
k k kT T T� �        		                 (16)
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The total cost is calculated as
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The total cost for edge execution is derived as
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The computational effort is determined by weights in 
the areas of energy consumption and latency in the 
task transmission, edge computing, and result trans-
mission phases.

The main objective is to formulate the sequential task 
function R and is denoted as

 
    	                (20)

The total size is represented as B in a set R. Furthermore 
the above problem is formulated as

 

 
A j

j

min U��

            (21)

A is the set of tasks to be completed within the time 
slot min

kT . The optimal offloading action is needed to 
be a decision variable that indicates the decision to re-
duce the overall system cost. In order to determine the 
best choice within a time slot, network data such as job 
information and processing capacity are utilized. The 
traditional methods such as NP-hard, MINLP and non-
convex optimization are not much effective due to the 
intelligence. That’s why we consider the RL based Mark-
ov decision process making (MDP) learning to provide 
more efficient decision to schedule/offload a task.

3 RL based MDP framework

The traditional methods are not efficient in optimiza-
tion due to the following reasons. 1. The task specific 
environments are dynamic in nature due to traffic, 
load, and delay characteristics. Traditional optimization 
techniques cannot handle the dynamic behavior of the 
MEC B5G network. 2. Due to the lengthy convergence 
of time and scalability problem intelligent decision 
making is required to offload. 3. Prior knowledge about 
the network environment is a challenging task for the 
traditional techniques. But RL based MDP technique 
follows the learning by using trial and error method. 
To address the above shortcomings, we propose the 
RL based MDP algorithm as a model-free methodology 
so as to make intelligent decisions and information ex-
change between agents (Mobile Edge device).  To dem-
onstrate the RL understanding of the suggested MEC 
system, following are the brief description,

3.1.1 State Space Sj,t
The set of input metrics of each agent for task offload-
ing decision occupies as a state space Sj,t = {D, c, f and 
dt}. The symbol set represents the size D of the net-
work, c is the cycle with computational capability f and 
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energy-sensitive or delay sensitive is the type of task 
and can be chosen as  � �0,1dt�  

3.1.2 Action Space aj,t 
Each mobile device can choose a particular action in 
a given time slot t. according to the local information 
from the MEC network. The action can be of binary of-
floading either to be executed or to be offloaded.

3.1.3 Reward function rj,t 
The proposed RL framework optimizes the computa-
tional capacity by means of selecting the cumulative 
reward function as the decision based upon the reward 
function as follows

(22)

I t 
indicates that the negative reward is given for higher 
cost function and vice versa. Then the utility function 
of each agent is denoted as
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The reward utility function is formulated as 
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Case 1:  p represents the positive reward if the compu-
tational cost is low.

Case 2: q represents the negative reward if the compu-
tational cost is high. 

We consider co-operative Q-learning for the informa-
tion exchange between the agents.  As number of tasks 
is sent to the edge server, the pressure on mobile de-
vices is lessened, as evidenced by the MEC server ex-
ecution steadily increasing. Meanwhile, mobile execu-
tion remains relatively low but stable, suggesting that 
certain jobs are still completed locally.

RL based Task offloading Algorithm (RLTOA)
Initialize : Task Values for {D, c, f and dt}
Ensure :  � �0,1dt� Episode counter b = 1 to 

Max
for  episode =1 to max do

for j=1 to M do
for t=1 to T do

Choose 
action

: Random action
Or based on ε-greedy policy Schedule 
Task or offload task based on the MEC 
server

Calculate 
and Return

: Reward utility function based on 
equation (24)

Apply Trial and error until
b > max

Return end if
end for
end for

3.2 RL based task offloading algorithm

The de-centralized multi-agent task computation of-
floading technique, which combines a MDP with Q-
learning to create an ideal offloading decision as illus-
trated, is the subject of the proposal in this section. It is 
built on the discussion from the previous section.

In Figure 2, each agent will compute locally or on the 
MEC server whenever new tasks are created in each 
time slot. As per algorithm, researches the distributing 
policy offloading, and then decides on a course of ac-
tion based on its knowledge of the surrounding area. It 
is then promptly rewarded for that action. The action 
probability and state function is updated every itera-
tions to optimize the weights.

Figure 2: Articulation of RL based task offloading.
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Because the edge servers and BSs in a cluster are lim-
ited in this scenario, we may cycle through every con-
ceivable combination of BSs and edge servers to find 
the optimal task offload rate. algorithm for task of-
floading based on reconstruction from reinforcement 
learning. It seeks to create a single collection of data by 
combining the Action policy and offloading.

4 Results and discussion

The experimental results of RL based task offloading 
algorithm is tested and the comparison of results with 
conventional study through MATLAB simulation envi-
ronment. 

MEC eanbled Hetnet is simulated to assess the effec-
tiveness of our proposed offloading decision algorithm 
for MEC edge systems. We regard the mobile edge de-
vices as being dispersed randomly and uniformly with-
in a 500 m radius disc. Femtocells that enable multiple 
edge users (MUEs and FUEs) range in number from two 
to forty. Every time slot has exactly one active FUE and 
MUE. The following are the detailed tabulation of simu-
lation parameters.

Table 1: Simulation Parameters

Parameters Value
Macro cell 1
No. of small cells 15
Bandwidth 20 MHz
Edge Bandwidth 1 MHz
Channel Power gain 1.42 x 10-4
Noise Power spectrum density -174 dBm
CPU cycles 0~1.75 GHz
Task size 2-25 Mb
Computational capacity of MEC 
server

20 GHz

Computational capacity of MC 
server

15 GHz

Effective switched capacitance 10-28 Farad
Learning Rate 0.001
Discount factor 0.9
Total episode (max) 2000

Weights       

1 1 1
 

l h e� � �� �
Weights       

1 1 1
 

l h e� � �� �

0.5

Total time steps per episode 100
Length of each slot 1 sec

The evaluation parameters are verified using MATLAB 
with a machine learning toolbox.  RL enabled edge-
computing setup is evaluated with average ratio of 

chosen modes to enable execution, drop and MEC 
server execution.

The cumulative reward is assessed for the convergence 
analysis. Due to this fact, average cumulative reward val-
ues are stored. The proposed problem is formulated with 
a delay restriction, and A penalty factor of 3 is added to 
the reward value if tasks exceed the deadline in order to 
manage the learning advancement.. The number of itera-
tions was set to 500, 1000 and 2000 respectively to re-
duce the computational complexity. The proposed RLTOA 
show that when the iteration is reached to 500 times, the 
convergence stability is shown by using the loss function. 
The accuracy is validated with 96.34% , Figures 3 and 4 
represent the mobile drop, MEC edge computing and lo-
cal computing. That requires numerous interactions. Spe-
ciously,. The QoS parameters SNR, Battery energy, com-
putational speed and energy efficiency (EE) are the key 
parameters for performance analysis. The results include 
the training phase and evaluation shows the training 
phase of the proposed RLTOA. The online learning system 
trains the agent to learn from the dynamic environment 
through trial and error. The delay-sensitive and intensive 
operation is checked with the MUEs and FUEs. The re-
ward function designed to guarantee the QoS of UEs at 
the time slot. The RL optimization for the computational 
execution cost and average energy is shown in figures 3 
and 4. To ensure that the task is completed, the MUE must 
meet a specific QoS standard that is consistently higher 
than a set threshold at all times.

Figure 3 and 4 depict the average ratio of execution 
and drop in a given time, There are different access 
possibilities for executing the total number of tasks in 
s given slot. The number of agents and their capacity 
to do the computing work determine the overall aver-
age cost. When compared to local, edge, and Q-learn-
ing networks, RLTOA is found to have a lower average 
cost. The suggested RLTOA controls the computational 
complexity as the number of agent’s increases. As a 
result, the outcomes were better than the handling 
capacity when there were more agents. When com-
pared to the three benchmarks, RLTOA eliminates the 
scalability problem.  Overall, the pattern points to an 
adaptive execution strategy in which task offloading 
improves with time, resulting in fewer task drops and 
better use of available resources. Figures 5 and 6 rep-
resent the average execution cost and battery energy 
level of the edge user. The graphical illustration shows 
how effective the computing capacity interms of their 
execution cost and battery energy. The computation-
intensive application from the ground edge level to the 
MEC server execution cost is reduced due to the shift-
ing from local computing to edge node. The process-
ing delays are significantly reduced thereby improving 
energy efficient task transmission.

J. M. Nandhini et. al.; Informacije Midem, Vol. 55, No. 3(2025), 183 – 192
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Figure 5: Temporal evolution of cumulative cost of 
MEC

The battery energy level based on the the latency is 
shown in Figure 7. Whenever the job size increases, so 
increases task execution delay, since they depends on 
the CPU cycles to complete the process. Computation-
al speed depends on how large the task size and how 
the delay rises.
.

Figure 7: Dynamic resource allocation strategies across 
different execution modes

Tables 2 and 3 present the computational power and 
task size results for the RLTOA in terms of cost and delay 
performance. The speed of computing for edge users is 
influenced by the time it takes to execute tasks.

Figure 8: Energy consumption decay of RLTOA

Figure 4: Average performance metrics of task execu-
tion strategies 

Figure 3: Average ratios of task execution strategies in 
mobile edge computing

Figure 6: Battery energy consumption dynamics in 
MEC 
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The ability of processing capacity was 2.4 GHz, It is 
evidenced that the computing power increases when 
the computation time decreases. As a result agents 
are monitored as energy-intensive applications. The 
convergence of RLTOA is shown in figure 8 for the en-
ergy-intensive applications. The algorithm operates by 
learning optimal computational offloading strategies 
between mobile devices and edge servers through a 
deep reinforcement learning approach. The energy 
consumption decays over iterations.

Table 2 and 3 comparative analysis with existing system

Table 2: Total cost performance
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[11] Local 40.25 70.55 26.50
[18] Edge 35.20 68.95 20.20
[22] DQN 24.35 63.50 17.50
Proposed 
method

RL
TOA

20.2 55 12.5

Table 3: Energy consumption performance
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[11] Local 28.36 48.45 49.25
[18] Edge 22.45 43.25 45.50
[22] DQN 19.10 39.35 40.87
Proposed 
method

RLTOA 18.16 37.62 38.25

The suggested RL-based edge computing algorithm’s 
effectiveness was demonstrated by the average total 
cost associated with computing power and energy 
consumption. . The numbers in the list are [18, 22, 23, 
11]. The suggested RLTOA lowered the offloading ex-
pense and average execution cost by 52.13%, 43.5%, 
and 28.7% in computational cost, task size, and drop. 
Tables 2 and 3 thoroughly analyzed the impact of the 
suggested RLTOA when compared DQN, as well as lo-
cal and edge computing. The results show how battery 
energy usage and job execution timing are affected by 
task size and processor power. RLTOA outperforms con-
ventional techniques by 4% and 10%, respectively, dur-

ing testing. Energy utilization is adequate since it has a 
major effect on overall expenses and task completion 
time. The hierarchical architecture for task execution is 
one of the parameters attributed to the RLTOA method. 
2) A new reward function for task delegation in an RL 
framework. 3) By implementing RLTOA with reduced 
complexity and minimal processing delay, the overesti-
mation problem is intended to be addressed.

5 Conclusion 

The suggested RLTOA approach has been executed 
with successful outcomes in computation offloading. 
Offloading facilitation is carried out by the ground 
edge server, assisting edge users with demanding 
computations, ensuring the successful fulfillment of 
all offloading and execution responsibilities. Energy 
consumption and task execution latency are reduced 
by offloading the task. The RL framework assists in op-
timizing costs and computational power by calculating 
a weighted sum average. An agent achieves optimal re-
sults by undergoing intense training and selecting the 
most effective offloading strategy, while making deci-
sions based on the new reward functions of the sug-
gested RLTOA plan. Finally, the RLTOA convergence is 
evaluated using simulation. The performance analysis 
is compared with the DQN, Edge and local system per-
formance.
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