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Sašo Tomažič
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Abstract

Verilog-A is the analog subset of Verilog-AMS - a hardware descrip-
tion language for analog and mixed-signal systems. Verilog-A is commonly
used for the distribution of compact models of semiconductor devices. For
such models to be usable a Verilog-A compiler is required. The compiler
converts the model equations into a form that can be used by the simu-
lator. Such compilers have been supplied with commercial simulators for
many years now. Free software alternatives are much more scarce and lim-
ited in the features they offer. The paper gives an overview of Verilog-A,
Free software Verilog-A compilers, and Free software/Open source simula-
tors that can simulate compact models defined in Verilog-A. Advantages
and disadvantages of individual compilers and simulators are highlighted.

1 History of Verilog-A

Verilog-A is a hardware description language (HDL) for analog circuits. It is
based on Verilog, which by itself is a HDL for digital circuits. The history of
Verilog [1] dates back to 1980s when Gateway Design Automation introduced the
language. In 1990 the language was acquired by Cadence Design Systems. The
language was transferred to public domain where it was supported and extended
by Open Verilog International (OVI). In 2000 Accellera Systems Initiative was
founded from the merger between OVI and VHDL International and has been
managing the language to date.

Verilog has been standardised by IEEE as standards 1364-1995 (Verilog-95)
[2], 1364-2001 (Verilog-2001) [3], and 1364-2005 (Verilog-2005) [4]. Since then
Verilog has evolved into SystemVerilog which offers new design (data lifetime
specification, more advanced data types, new procedural blocks, and interfaces)
and verification features (new data types, object-oriented programming model,
generation of constrained random values, assertions, coverage, and synchroni-
sation primitives). SystemVerilog has been standardised by IEEE as standards
1800-2005 (superset of Verilog-2005) [5] and 1800-2009 (SystemVerilog 2009) [6]
with further updates in 2012 (1800-2012) [7], 2017 (1800-2017) [8], and 2023
(1800-2023) [9].
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In parallel to the evolution of Verilog a new HDL for analog/mixed signal
systems was being developed. Verilog-A, which is a HDL for purely analog
systems, was released in 1996 by OVI [10]. Its syntax was based on the syn-
tax of Verilog, but the language constructs were designed for describing analog
systems in terms of ordinary differential equations (ODE). The language was
primarily created to standardize the Spectre simulator’s behavioral language in
times when it was facing competition from VHDL that was getting analog capa-
bilities via incorporating analog HDL languages like MAST [13]. Verilog-A was
developed with a more advanced language in mind - one that would be capable
of describing analog, as well as, mixed-mode systems. The language was released
in 1998 and was deemed Verilog-AMS (version 1.3). In the year 2000 version
2.0 of Verilog-AMS was released. Since then Verilog-AMS has beed updated
in 2009 (version 2.3.1), 2014 (version 2.4.0) [11], and 2023 (Verilog-AMS 2023)
[12]. Currently work is underway to merge Verilog-AMS with SystemVerilog to
produce SystemVerilog-AMS [14]. Verilog-A and Verilog-AMS did not become
IEEE standards and have remained under the oversight of Accellera. Modern
Verilog-A is the analog subset of Verilog-AMS.

Free software [15] alternatives for Verilog-A are important, among other
things, because they make Verilog-A and the compact models defined in Verilog-
A available to a wide audience without having to pay the high cost of commercial
tools. Free software means that the users have the freedom to run, copy, dis-
tribute, study, change and improve the software. It is usually licensed under
the GNU General Public License (GPL) or some other compatible license. Free
software must not be confused with free software (lowercase). The latter means
only that the price of the software is zero and does not give its users the same
freedom as Free software. All Free software is Open source [16], but every Open
source software is not Free software. Open source licenses can be more restric-
tive that GPL. Free software has great impact. As an example, consider the
importance, usefulness, and implications of the GNU C Compiler [17] or Free
software for Verilog-95 simulation (i.e. Verilator, [18]).

2 Using Verilog-A for compact modelling

Verilog-A is commonly used for the distribution of compact models (CM) of
semiconductor devices. Compact models provide the equations linking termi-
nal currents to terminal voltages of circuit components like MOSFETs, bipolar
transistors, diodes, etc. The usual approach to formulating circuit equations is
modified nodal analysis (MNA) [19] where as many as possible branch currents
are explicitly expressed and substituted into Kichoff current law equations.

In every circuit one Kirchoff current law equation (KCL) can be constructed
for each node, with the exception of the reference node. Each node is associated
with a nodal voltage (potential) which becomes an unknown in the system of
equations. An exception to this is the reference node whose nodal voltage is
assumed to be zero. Branch currents that cannot be explicitly expressed are
kept as unknowns in the system of equations. In circuit simulation such branch
currents are treated as the associated quantities of so-called flow nodes. For
each flow node an equation has to be added to the system. This equation is
obtained from the constitutive relation of the element where the aforementioned
branch resides and has a similar role as the KCL equation of an ordinary node.
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Flow nodes are typically used for modelling voltage sources and inductors.
Equations of a model are formulated as ordinary differential equations (ODE).

Let us assume a circuit element has n nodes (ordinary and flow nodes) of which
the first m ≤ n nodes are terminals. All terminals are assumed to be ordinary
nodes. The associated quantities of the nodes are considered to be the indepen-
dent variables and their values are listed in vector x. Let y denote the vector
of terminal currents where a current is assumed to be positive if it flows into
the corresponding terminal. Components of y that correspond flow nodes or
internal nodes are assumed to be 0.

Let g(x) and q(x) denote two vector valued (nonlinear) functions of inde-
pendent variables. These two functions represent the resistive and the reactive
contributions to the equations associated with the aforementioned n nodes. For
ordinary nodes the components of g(x) and q(x) correspond to resistive currents
flowing from the nodes and charges accumulated at the nodes, respectively. For
flow nodes they correspond to voltages and fluxes. The resistive currents are
assumed to be positive if they flow outward from a node. After a Verilog-A
compact model is compiled its equations are formulated as

y = g(x) +
d

dt
q(x) (1)

Noise sources are treated separately and are not included in this formulation.

A C

SR SD

RS DI

iA iCAi

Figure 1: Model of a semiconductor diode. Noise sources SD and SR are treated
separately by Verilog-A.

As an example, let us consider a semiconductor diode in Figure 1. The
model has two terminals (A and C) and one internal node (Ai). It comprises a
linear resistor (RS) that models the series resistance of a diode and a core diode
that models the nonlinear diode characteristic and its charge storage. The noise
generated by the diode and its series resistance is modelled by noise sources
with power spectral densities SR and SD. Vectors y and x in equation (1)

can be written as y = [iA, iC , 0]
T

and x = [vA, vC , vAi]
T
. The two nonlinear

vector-valued functions are

g(x) =

 R−1
S (vA − vAi)

−iD(vAi − vC)
R−1

S (vAi − vA) + iD(vAi − vC)

 , (2)

q(x) = [0,−qD(vAi − vC), qD(vAi − vC)]
T
. (3)

To simplify expressions let us neglect the diode’s junction capacitance and as-
sume it exhibits only diffusion capacitance. Then functions iD and qD can be
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written as

iD(u) = IS(exp(u/VT )− 1), (4)

qD(u) = τ
IS
VT

exp(u/VT ) (5)

The power spectral densities of the two noise sources are SR = 4kT/RS and
SD = 2qiD(vAi − vC) +Kf iD(vAi − vC)

Af /f . IS , τ , Kf , and Af are diode pa-
rameters and VT is the thermal voltage (kT/q). The Boltzmann constant, the
absolute temperature, and the electron charge are denoted by k, T , and q, re-
spectively. The core diode noise source (SD) comprises a frequency-independent
shot noise component and a flicker noise component whose power spectral den-
sity is inversely proportional to the frequency. The Verilog-A code defining the
diode model is

‘include "constants.vams"

‘include "disciplines.vams"

module diode(A,C);

inout A, C;

electrical A, C, AI;

parameter real Is = 1e-14 from [0:inf];

parameter real Rs = 0.1 from (0:inf];

parameter real Tau = 1e-6 from [0:inf];

parameter real Kf = 1e-12 from [0:inf];

parameter real Af = 1 from (0:inf];

real VT, id, qd, g;

analog begin

VT = ‘P_K*$temperature/‘P_Q;

id = Is*(exp(V(AI, C)/VT)-1);

g = Is/VT*exp(V(AI, C)/VT);

qd = Tau*g;

I(A, AI) <+ V(A, AI) / Rs;

I(AI, C) <+ id + ddt(qd);

I(A, AI) <+ white_noise(4*‘P_K*$temperature/Rs, "rs");

I(AI, C) <+ white_noise(2*‘P_Q*id, "id");

I(AI, C) <+ flicker_noise(Kf*pow(id, Af), 1, "flicker");

end

endmodule

Once all models formulate their equations along the lines of (1) the system of
equations describing a circuit can easily be assembled. For each circuit element
the components of vector y corresponding to terminals are simply added to the
KCL equations of nodes to which these terminals are connected. Rows of (1)
that correspond to internal nodes and complement the circuit’s KCL equations
as extra equations.

Verilog-A is capable of describing all aspects of a device covered by a legacy
SPICE3 model implemented in C. There are several advantages in using Verilog-
A. The models are significantly shorter. This arises from two facts. Writing a
model in C can require many lines of code for expressing concepts that are
expressed with a single line in Verilog-A. Secondly, Verilog-A compilers auto-
matically derive the expressions for the derivatives of functions g and q with
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respect to components of x. These expressions must be formulated manually in
SPICE3 models and can easily double the amount of C code that needs to be
written. Manual implementation of derivatives is error prone. Incorrectly im-
plemented derivatives result in convergence problems during simulation which
can arise only under certain circumstances and are thus not easily detectable.

Table 1: Length in lines of code (l) and the number of parameters (p) for various
MOSFET compact device models.
Compact model released language l p l/p
BSIM3 3.2.4 2001 C 14176 439 32
BSIM3 3.3.0 2005 C 13741 441 31
BSIM4 4.5.0 2005 C 23882 789 30
BSIM4 4.8.2 2020 C 27561 926 30
BSIM4 4.8 (Cogenda) 2019 Verilog-A 12591 897 14
BSIM6 6.0.0 2013 Verilog-A 3628 757 4.8
BSIM-BULK 107.1.0 2022 Verilog-A 4992 1073 4.7

Table 1 lists selected BSIM3, BSIM4 and BSIM-BULK (BSIM6) models
[20]. The number of parameters of a model (p) is closely correlated with the
size of the model expressed as lines of code (l). It is evident that SPICE3 mod-
els implemented in C are significantly more verbose than models implemented
in Verilog-A. Models that are implemented in Verilog-A since their inception
(BSIM6, BSIM-BULK) comprise roughly 6 times fewer lines of code per param-
eter than SPICE3 models implemented in C (BSIM3, BSIM4). Even models
translated from a SPICE3 model (e.g. Cogenda BSIM4 4.8 [21]) comprise less
than half the amount of code per parameter compared to SPICE3 models.

Modern device models, like BSIM-BULK, BSIM-SOI, HICUM, MEXTRAM,
etc., are all released by their developers (mostly universities) in Verilog-A. Com-
pact Model Coalition (CMC) [22] performs quality checks and verifies if the
released models comply with standards.

3 Interfacing with a simulator

Simulators typically require from a model to compute the contributions to KCL
equations (given by vector-valued functions g and q) for a given vector of inde-
pendent variables (x). The system of first order differential equations is assem-
bled as discussed in section 2 and can be expressed as

g∗(x∗) +
d

dt
q∗(x∗) = 0, (6)

where vector x∗ is obtained by meaningfully merging vectors of independent
variables corresponding to individual circuit elements (x) because an indepen-
dent circuit variable can appear in multiple circuit elements. Functions g∗ and
q∗ are obtained by adding up contributions from circuit components (g and q)
depending on the way their terminals are connected to the circuit’s nodes. Each
node corresponds to one KCL equation. Contributions of grounded terminals
are ignored. The last n−m components of each element’s g and q correspond
to extra equations. These equations complement the set of KCL equations to
form the circuit’s system of equations.
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Numerical algorithms employed by simulators depend on the derivatives of
g∗ and q∗ with respect to the independent variables x∗. These derivatives are
gathered in the Jacobian matrices G∗ and C∗ whose components are given by

G∗
ij =

∂g∗i
∂x∗

j

, (7)

C∗
ij =

∂q∗i
∂x∗

j

. (8)

Because g∗ and q∗ were constructed by adding contributions from vector
valued functions g and q matrices G∗ and C∗ can be constructed by adding
contributions from Jacobian matrices G and C computed for functions g and q,
respectively. To summarize, an analog device model must compute the Jacobian
matrices G and C alongside g and q for a given vector of independent variables
x.

In time-domain analysis equation (6) must be numerically integrated to ob-
tain a system of nonlinear algebraic equations. When backward Euler integra-
tion is used equation (6) becomes

g∗(x∗(tk+1)) +
q∗(x∗(tk+1))− q∗(x∗(tk))

tk+1 − tk
= 0 (9)

where tk+1 is the timepoint for which we are solving the circuit and tk is the
previous timepoint where the circuit’s solution is already known. In older sim-
ulators (e.g. SPICE3, Gnucap, and QUCS) numerical integration is performed
by the device model itself. Consequently models in transient analysis do not
compute a separate q(x). Instead they replace g(x) and its Jacobian with

f(x) = g(x) +
q(x)− q(x(tk))

tk+1 − tk
and (10)

F(x) = G(x) + (tk+1 − tk)
−1C(x). (11)

In this way the code that computes the DC solution can be used without any
modification for computing the time-domain solution from

f∗(x) = 0. (12)

Here f∗(x) is assembled from contributions of individual elements (i.e. f(x)) in
the same way as previously g∗(x) and q∗(x) have been assembled from g(x)
and q(x).

This approach violates the separation between the simulator and the models
and unnecessarily increases the size of the device model. On the other hand,
it also has some advantages besides code reuse between DC and time-domain
analysis, like the capability to implement non quasi-static effects in transistor
models without adding extra nodes to the circuit (for how this is done in case of a
bipolar transistor, see [23]). Serious flaws can also arise from this approach, e.g.
the charge conservation problem in early MOSFET models [24, 25]. Charge non-
conservation is a serious bug that was facilitated by the capability of handling
numerical integration within models themselves. The problem originated from
the attempt to formulate model’s dynamics with ordinary reciprocal capacitors
between nodes instead of charges stored at nodes. Charge non-conservation is
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impossible to “implement by accident” if charge based modelling is enforced like
in Verilog-A.

Modern simulators separate numerical integration from device model eval-
uation. Using the formulation given by (6) as the basis of a circuit simulator
adding new types of analysis becomes a much simpler task. This has been
demonstrated in the past by commercial and free simulators, like Spectre [26]
and fREEDA [27].

4 Free software compilers for compact models
in Verilog-A

This sections gives an overview of Free software Verilog-A compilers where the
term Verilog-A compiler is meant in a very broad sense. Two of these com-
pilers (ADMS and OpenVAF) only support a subset of Verilog-A for compact
modelling. The third one (Modelgen-Verilog) aims to be a full Verilog-AMS
compiler once completed. Since this paper’s focus is on compact modelling all
three compilers are viable candidates for compiling compact models once their
limitations are taken into account.

4.1 ADMS

ADMS (Automatic Device Model Synthesizer) [28] is the oldest of Free software
Verilog-A compilers. It was developed by Motorola. At the time of its develop-
ment MOSFET models were becoming excessively large. Back then the state of
the art model (BSIM4) had almost 1000 parameters. The only way to use an
advanced MOSFET model was either to use its official Open source implemen-
tation for the SPICE3 simulator and accept all the quirks and shortcomings of
SPICE3 or implement the model from scratch for the simulator of choice.

Most commercial simulators at the time offered an API (e.g. [26, 29]) via
which an external model could be implemented in C. Implementing a model
with several hundred parameters involves writing tens of thuosands of lines of C
code. Derivatives of currents and charges must be manually implemented. This
process is error prone and slow. Furthermore, due to different APIs a large part
of the model has to be rewritten for each simulator.

Verilog-A solves these problems since the model has to be implemented only
once and the implementation can then be used by all simulators supporting
Verilog-A. ADMS was developed as a tool that compiles Verilog-A into a model
utilizing the C API of a selected simulator. After defining a new ADMS back-
end tailored to a specific simulator one can compile arbitrary Verilog-A models
(within the limitations of ADMS) for that simulator. The process of compila-
tion with ADMS is fairly slow. For a modern CMC model it can take more
than a minute (e.g. for PSPv103 [42]). The generated code must be compiled
(usually with a C/C++ compiler) and linked either statically with the simulator
(e.g. Xyce [36]) or into a dynamic library that can be loaded by the simulator
on-demand (e.g. Spectre [26], Ngspice [33], Gnucap [34]).

ADMS itself is implemented in C utilizing the Glib library [31]. The com-
piler operates by parsing the Verilog-A code and representing it in the Exten-
sible Markup Language (XML) [30]. The specifications for the code generator
(backend) are defined in XSLT, a subset of XSL [32], which is a language for
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representing XML document transformations. Models generated by ADMS are
approximately 20% slower that hand-coded models [28].

Over the years ADMS has been used as the only available Verilog-A solution
for compact modelling in Open source simulators like Ngspice [33], Gnucap [34],
Qucsator [35], and Xyce [36]. Of all the listed simulators Xyce is the most
advanced one with the best ADMS support. Nevertheless its ADMS integration
has many limitations [37]. CMCmodels can be handled by ADMS after applying
some manual modifications to the model (e.g. [38]).

ADMS is no longer being developed by its author. Development has been
taken over by the Qucs project [39]. Contributions to the Git repository since
2017 are scarce and have ceased in 2022.

4.2 OpenVAF

OpenVAF [40] is a fairly recent development. It evolved from VerilogAE [41]
whose primary purpose was to ease the process of model parameter extraction
by retrieving the model equations from Verilog-A code. OpenVAF translates
Verilog-A into a dynamic library with the help of the LLVM library [47]. LLVM
emits highly optimized machine code and is generally used for implementing
compilers. The resulting dynamic library interfaces with the simulator via the
Open Source Device Interface API (OSDI API) [46].

Internally OpenVAF translates Verilog-A code into an abstract syntax tree
(AST). Then it performs several transformations in the steps that follow. The
first step resolves undefined references to other parts of the code to produce
high-level intermediate representation (HIR). HIR is further processed by con-
structing a control flow graph, thus defining the execution order of the state-
ments. Symbolic derivatives of expressions with Verilog-A operators ddx and
ddt are computed to be later used during the construction of the Jacobians and
module’s output variables. The result of HIR processing is the medium level
intermediate representation (MIR). From MIR the LLVM intermediate repre-
sentation (IR) is generated. IR is a high-level abstraction of the machine code.
LLVM performs several low-level optimizations on IR before emitting machine
code for the target platform.

The resulting code is very efficient and faster than the code generated by an
ordinary C/C++ compiler from ADMS output. OpenVAF supports a significant
part of the Verilog-A specification and can compile all of the CMC models
without any manual modifications. There are some limitations, though. The
compiler does not support analog events, genvars, hidden states, Laplace filters,
paramsets, and hierarchical modules. But since these features are rarely used in
compact models the lack of them does not represent a significant shortcoming
at this point in time.

OpenVAF has replaced ADMS in Ngspice. It is also used by a free but
closed-source simulator Spice Opus [48]. Finally, it is the core part of a novel
Free software simulator VACASK [43, 44] for which the devices supported by
the simulator are almost exclusively defined in Verilog-A.

Table 2 outlines the performance of OpenVAF-generated models with respect
to builtin models (manually coded in C/C++), models generated by ADMS, and
models generated by commercial compilers. These results are sparse and not
sufficient to reliably determine the compiler that produces the fastest models,
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Table 2: Simulation runtimes for various models (taken from [42]). Builtin
devices defined in C/C++ are denoted by a dash in the compiler column.
Simulator Free Compiler/built-in t [s] Comment
HICUM/L2v2p4p0 characteristic
Ngspice yes OpenVAF 9.16
Ngspice yes - 14.64 slow implementation
Xyce yes ADMS 36.42 strict convergence checks
Xyce yes - 26.56 strict convergence checks
ADS no proprietary 8.63
ADS no - 7.01
Spectre no proprietary 52.61
Spectre no - 25.33
BSIMSOI 4.4.0 characteristic
Ngspice yes OpenVAF 8.47
Ngspice yes - 7.98 manually optimized model
BSIMBULK 106.2 characteristic
Ngspice yes OpenVAF 2.08
Ngspice yes ADMS 3.38
BSIMBULK 106.2 transient
Ngspice yes OpenVAF 9.47
Ngspice yes ADMS 13.70
PSP 103.8 inverter
Ngspice yes OpenVAF 20.01
Ngspice yes ADMS 25.07
PSP 103.8 with ISCAS C7552
Ngspice yes OpenVAF 1200
Ngspice yes ADMS 1500

but nevertheless, they are a good indicator what one can expect from ADMS
and OpenVAF.

Several Verilog-A compilers were tested by using the compiled HICUMmodel
to compute the transistor’s characteristics. OpenVAF comes out close to the
top, second only to the compiler in ADS [49]. Xyce with ADMS comes out
as one of the slowest solutions. This can be largely attributed to more strict
convergence checks in Xyce when compared to Ngspice. Ngspice performance
on this test problem can be attributed to sub-optimally coded derivatives in the
built-in HICUM model.

When compared to a mature and highly optimized manually written builtin
model in Ngspice (BSIMSOI 4.4.0) the OpenVAF-compiled model exhibits only
6% slower performance. On the two BSIMBULK test problems (characteristic
and transient) the ADMS-compiled model is 45% to 60% slower than the one
compiled with OpenVAF. This difference is significantly greater than the dif-
ference between models compiled by ADMS and manually coded models (mod-
els generated by ADMS are on average 20% slower). On the PSP inverter
test problem the ADMS-compiled model is 20% slower than the one compiled
with OpenVAF. The large test problem (ISCAS C7552) once again confirms
the speed difference between models generated by ADMS and OpenVAF. These
two benchmark results, the result obtained with the BSIMSOI model, and the
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fact that ADMS models are on average 20% slower than hand-coded models in-
dicate that OpenVAF-generated models are roughly as fast as manually coded
compact models.

4.3 Modelgen-Verilog

Modelgen-Verilog (MGV) [45] is a Verilog-AMS compiler for the Gnucap [34]
circuit simulator. It has been in development since 2023. The ultimate goal of
the project is to implement full support for Verilog-AMS in Gnucap. Presently
the compiler outputs C++ code that is tightly coupled with the Gnucap simu-
lator. After compiling and linking the code a dynamic library is obtained that
can be loaded by Gnucap. The dependence on Gnucap could be removed in the
future as backends for other simulators get added.

At the present (June 2024) the compiler seems to be capable of processing
some CMC models [50], albeit quite inefficiently since a compiled PSP103 model
uses 30 internal nodes, while its Verilog-A source code defines only 17 internal
nodes. Consequently, simulations with the generated devices are reportedly slow
[50]. A comparison akin to that in Table 2 has not been published yet.

A significant improvement in speed is expected from paramset support.
Paramsets substitute most of the model parameters with concrete numbers upon
which the expressions are simplified (constant folding) thus significantly reduc-
ing the computational burden of model evaluation. Further speedup could be
obtained if the analog part of the compiler would implement optimizations akin
to those in OpenVAF.

Modelgen-Verilog is a project whose ambitions are much bigger than the
topic of this paper. Currently the compiler supports paramsets, analog events,
hierarchical models, Verilog-A disciplines, discontinuities, and frequency domain
filters. These features are missing in the remaining two Verilog-A compilers.
Due to its early stage of development not many optimizations have been applied
yet and there is a lot of room for improvement.

5 Free software/Open source simulators support-
ing compact models in Verilog-A

Table 3 gives a concise overview of the Free software/Open source analog circuit
simulators that support compact models defined in Verilog-A. Note that the
term Free software cannot be applied to Ngspice because of its license. Despite
this Ngspice is still Open source and parts of it are Free software.

Core size of a simulator is the size of the simulator’s source code excluding
code that defines the device models. Simulators usually offer some kind of
parameter sweep which is significantly more efficient than repeatedly running
the simulator with a modified input file. Although a sparse linear solver is almost
a must for a circuit simulator, not all simulators use one (e.g. Qucsator).

The process of simulation can be divided into two steps that in general must
be repeated multiple times in order to complete a circuit analysis: evaluation of
the circuit’s components and solving a system of linear equations. Both steps
can take advantage of parallel processing which can speed up the simulation and
facilitate the simulation of circuits that are too big to fit on a single computer.
Not many simulators exploit parallelism (only Xyce and partly Ngspice).
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Table 3: Comparison of Free software simulators. Asterisk denotes a feature
under development as of September 2024.

Xyce Ngspice VACASK Gnucap Qucsator
Language C++ C C++ C++ C++
Core size (lines of code) 185500 63800 36700 28600 50300
Verilog-A CM support ADMS OpenVAF OpenVAF MGV or ADMS ADMS
Operating point (OP) yes yes yes yes yes
Small-signal AC yes yes yes yes yes
Transient yes yes yes yes yes
Small-signal noise yes yes yes no yes
Harmonic balance yes no no* no yes
Analyses supported by sweep all OP all OP all
Sweep depth arbitrary 2 arbitrary arbitrary 1
Analysis/device separation yes no yes no no
Sparse solver yes yes yes yes no
Parallel evaluation yes yes no no no
Parallel solver yes no no no no
SPICE devices yes yes no* yes partly

Finally, for a simulator it is important to provides basic SPICE device models
(e.g. Gummel-Poon BJT, MOSFET levels 1-3, and 6, JFET, and MESFET).
Mature simulators provide these device models (Xyce, Ngspice, Gnucap) while
newer ones do not (VACASK, Qucs).

In the remainder of this section a more detailed description will be given for
each one of the mentioned simulators.

5.1 Xyce

Xyce [36] is the most advanced of all the simulators listed in Table 3. Like
all modern simulators, Xyce’s core separates the device models from analysis
implementation which makes it possible to implement a new analysis without
having to change the device models. The simulator is capable of accelerating
computations via parallel computing. Numerical capabilities are provided by
the Trilinos [51] suite of libraries that offer unified wrappers around various
state of the art solvers (like KLU). Element evaluation, as well as, certain linear
solvers can take advantage of parallel processing. The latter is efficient only for
very large circuits. Xyce offers all the standard SPICE circuit analyses, as well
as, harmonic balance analysis.

Support for compact models in Verilog-A is provided by ADMS. The de-
velopment team announced in 2022 [52] that they intend to build their own
Verilog-A compiler based on an in-house Python library for (symbolic) differen-
tiation. Since then there has been little news regarding this subject. Currently
ADMS in Xyce has many limitations [37], largely due to the nature of ADMS.

5.2 Ngspice

Ngspice [33] is the most commonly used Open source simulator. It is based
on the original SPICE3f5 source code in C. The original source code has been
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significantly extended and many bugs and shortcomings were fixed. One of
these shortcomings was the original linear solver library of SPICE3 [55], which
by now is no longer competitive. It has been replaced with the much faster
KLU library [56].

Unfortunately, as is customary with all SPICE-based simulators, the models
are tightly coupled with the circuit analyses. This makes it hard to add new
types of analysis without making extensive changes to the large library of de-
vice models. Ngspice partly supports parallel evaluation of elements, either on
multiple local CPU cores via OpenMP [53], or (for some elements) on a GPU
via CUDA [54]. The linear solver, however, is not parallel.

Support for Verilog-A compact models was implemented at first with ADMS.
Recently, the OSDI API has been implemented which in turn makes it possible
to use OpenVAF-generated models.

5.3 Gnucap

Gnucap [34] has a long history dating back to 1982. Since then it has been
in slow, but steady development. The set of circuit analyses is fairly limited
(only operating point/DC sweep, AC, and transient analyses are supported).
The separation between the device models and the analyses is not complete as
the models still have separate matrix loading functions for the time domain and
for the frequency domain. This is alleviated by the fact that Gnucap’s models
are mostly generated with Modelgen, Gnucap’s own model generator, not to be
confused with Modelgen-Verilog. Models generated by both model generators
are accessed by the simulator through the same API. Another shortcoming of
Gnucap is its linear solver which is outdated. On the bright side, the solver offers
functionality not available in other Free software circuit simulators because it
can do partial solves of matrices when only a part of the matrix changes.

Support for Verilog-A compact models is provided by ADMS. Recently, de-
velopment of a novel Verilog-AMS capable compiler for Gnucap has started
(Modelgen-Verilog [45]). The compiler already supports a large subset of Verilog-
AMS.

5.4 Qucsator

Qucsator [35] is a fairly new simulator whose beginnings date back into early
2000s when it started as the Quite universal circuit simulator (Qucs) project’s
own simulator. The simulator offers operating point/DC, AC, S-parameter,
transient, and harmonic balance analysis. The models are tightly coupled with
the analyses so implementing a new kind of analysis generally means all device
models need to be modified, too. A major shortcoming is the fact that the sim-
ulator does not use a sparse linear solver. Instead an ad-hoc dense matrix solver
is used, which makes the simulator impractical for anything but the smallest of
circuits. Support for Verilog-A compact models is provided by ADMS.

5.5 VACASK

VACASK [43, 44] is a recently published simulator. It separates the models
from the analyses thus simplifying the implementation of analyses by avoiding
changes in device models. VACASK uses a state of the art linear solver (KLU).
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The simulator offers operating point/DC, AC, small-signal transfer function (DC
and AC), transient, and noise analysis. Harmonic balance analysis is currently
under development, as well as, support for SPICE builtin device models.

VACASK supports the OSDI API so that Verilog-A compact models com-
piled with the OpenVAF compiler can be used. In fact, most of the simulator’s
device library is implemented in Verilog-A. An exception to this are indepen-
dent sources, linear controlled sources, and inductive couplings. These elements
cannot easily be implemented in the Verilog-A subset supported by OpenVAF
if one wants them to provide the same kind of interface as SPICE3 models do.

VACASK is in early stages of development. Preliminary benchmarks indicate
that in single CPU mode it runs faster than Xyce, Gnucap, and Ngspice [43].

6 Conclusion

Verilog-A is the analog subset of Verilog-AMS. Over the years Verilog-A has
become the de-facto standard for distributing compact models of semiconductor
devices. Models implemented in Verilog-A need not specify any derivatives
which makes the models significantly shorter and the coding process less error-
prone. Verilog-A focuses on the equations describing the behavior of a circuit
element. This reduces the size of a compact model by a factor up to 6 compared
to SPICE3 compatible C code. Verilog-A compilers can significantly speed up
the execution of a model by applying optimizations before the final machine
code is emitted. The resulting model can be as fast as the hand-coded version
of the model.

Verilog-A compilers are supplied with most commercial simulators. The
available alternatives in the realm of Free software are much more scarce. Simu-
lator developers can choose between three alternatives. ADMS is an old solution
that requires manual intervention in the model code. OpenVAF is a modern
compiler that produces fast models. Both alternatives support only a subset
of Verilog-A. OpenVAF is more suitable because it is capable of compiling all
public CMC models without modifications. The third alternative (Modelgen-
Verilog) is a Verilog-AMS compiler that already supports a large part of the
standard despite being in the early stages of development. It is capable of com-
piling Verilog-A compact models, but the resulting code is somewhat inefficient.
Unfortunately its interface currently supports only the Gnucap simulator.

Several Open source and Free software simulators support Verilog-A, ranging
from the most advanced one (Xyce), through SPICE3-based Ngspice, and newer
simulators like Qucsator, Gnucap, and VACASK. All of these simulators support
compact models defined in Verilog-A via one of the three mentioned alternatives.
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