
197

Original scientific paper

 MIDEM Society

Area and Energy efficient CORDIC Accelerator
for Embedded Processor Datapaths
Abdul Rehman Buzdar1, Liguo Sun1, Shoab Ahmed Khan2, Abdullah Buzdar1

1Department of Electronic Engineering and Information Science, University of Science and
Technology of China (USTC), Hefei, China
2Department of Computer Engineering, National University of Sciences and Technology (NUST),
Islamabad, Pakistan

Abstract: A proven approach to enhance the performance of an embedded processor is to add specialized hardware accelerator
blocks. We present two novel CORDIC accelerator units based on mixed hardware/software approach. These CORDIC accelerators
are integrated with an embedded processor datapath to enhance the processor performance in terms of execution time and energy
efficiency. The first accelerator design is based on the Standard CORDIC algorithm. The Standard CORDIC based accelerated embedded
processor datapath is 35% more cycle efficient than a datapath lacking Standard CORDIC accelerator. This design also leads to 34%
energy reduction. The mixed hardware/software implementation of Standard CORDIC algorithm is area efficient as it saves two 16-
bit adders. The second accelerator design is based on a Modified CORDIC algorithm. Our evaluation shows that a Modified CORDIC
accelerated embedded processor datapath is 14.5 times more cycle efficient than a datapath lacking Modified CORDIC accelerator.
This design leads to 14 times energy reduction with a very small area overhead. The mixed hardware/software Modified CORDIC
accelerator is area efficient as it saves four multipliers and two adders. The Modified CORDIC hardware accelerator block has 4.3 times
less latency and takes 4 times less area as compared to Standard CORDIC Time Shared implementation. The novelty of the design in
the use of Modified CORDIC accelerator is that it takes a single iteration to compute the values of sine and cosine as compared to the
Standard CORDIC algorithm, which requires N iterations. This provides effective use of the accelerator in programming systems where
a series of values of sine and cosine are required to be computed.

Keywords: CORDIC; Accelerator; Codesign; FPGA; MicroBlaze Processor

Prostorsko in energijsko učinkovit CORDIC
pospeševalnik za podatkovne poti vgrajenega
procesorja
Izvleček: Dodajanje specializiranih pospeševalnih blokov v vgrajen procesor je uveljaljena metoda povečevanja njegove učinkovitosti.
Predstavljamo dve novi pospeševalni enoti za CORDIC na osnovi mešane programsko strojne rešitve. Ti pospeševalniki so integrirani
v podatkovne poti procesorja za zagotavljanje krajšega izvajalnega časa in energijske učinkovitosti. Prvi pospeševalnik temelji na
standardnem CORDIC algoritmu in omogoča 35 % višjo učinkovitost cikla kot brez njegove uporabe. Poraba energije je 34 % nižja.
Programsko/strojno mešana implementacija je prostovno učinkovita in prihrani dva 16-bitna seštevalnika. Drugi pospeševalnik temelji
na modificiranem CORDIC algoritmu. Vrednotenje modificiranega algoritma je pokazalo 14.5 kratno izboljšanje učinkovitosti cikla.
Istočasno se je za 14 krat zmanjšala poraba energije. Programsko/strojno mešana rešitev prihrani štiri množilnik ein dva seštevalnika.
Strojno izveden modificiran CORDIC pospeševalnik ima 4.3 krat manjšo latenco in potrebuje 4 krat manj prostora kot standardna
CORDIC rešitev s delitvijo časa. Prednost modificiranega CORDIC pospeševalnika je, da potrebuje le eno iteracijo za izračun sinusa
in kosinusa v primerjavi s standardnim CORDIC algoritmom, ki potrebuje N iteracij. To omogoča njegovo učinkovito uporabo v
programskih sistemih s potrebo po računanju velikega števila izračunavanja funkcij sinus in kosinus.

Ključne besede: CORDIC; pospeševalnik; Codesign; FPGA; MicroBlaze procesor

* Corresponding Author’s e-mail: liguos@ustc.edu.cn ; abdul.buzdar@alumni.chalmers.se

Journal of Microelectronics,
Electronic Components and Materials
Vol. 46, No. 4(2016), 197 – 208

198

1 Introduction

The CORDIC (Coordinate Rotation Digital Computer)
algorithm first introduced by Jack E.Volder [1], [2] in
1959 is used for the computation of trigonometric
functions, multiplication, and division. It was extended
further by John Walther [3], [4] in 1971 for the compu-
tation of a wide range of elementary functions such as
logarithms, exponentials, and square roots. During the
same period, Cochran [5] showed that the CORDIC al-
gorithm is a suitable technique for scientific calculator
implementation. CORDIC algorithm is used in a broad
range of areas including signal processing, communi-
cation systems, robotics and computer graphics. Dur-
ing the past 50 years, a lot of research has been carried
out on CORDIC in the area of algorithm and architecture
design to achieve high performance and area efficient
hardware solutions [6-8]. Angle recording CORDIC [9]
solves the repetitive rotation issue of Standard CORDIC
by recoding the latest inserted item into the angle set.
This technique is helpful in the implementation of Dis-
crete Fourier Transform and Discrete Cosine Transform
but has a drawback of unpredictable scale factor [10].
Extended Elementary Angle Set (EEAS) CORDIC uses
searching techniques such as Greedy Searching and
Trellis-based Searching Algorithm (TBS) to find the
required angle from an angle set [11], [12]. Pipelined
CORDIC architectures [13-15] are widely implemented
in digital signal processing for sine wave generation,
orthogonal discrete transform, and adaptive filtering.
Radix-4 [16], [17] and BCD [18], [19] CORDIC architec-
tures are applied in situations where high precision is
required. Vachhani et al. [20] implemented CORDIC de-
sign by eliminating ROM and barrel shifters, resulting
in huge resource reduction. CORDIC architecture with
reduced ROM has also been reported in [21]. Aggarwal
et al. [22] implemented Scale-free hyperbolic CORDIC
processor for waveform generation. Caro et al. [23]
implemented digital synthesizer/mixer with hybrid
CORDIC multiplier architecture.

CORDIC algorithm is used in many real-time appli-
cations including direct digital frequency synthesis
(DDFS) having critical latency issue. The Standard
CORDIC algorithm has fixed latency in which the num-
ber of iterations is directly proportional to bit precision.
A lot of research has been carried out in past to improve
the latency of CORDIC for the calculation of sine and
cosine of an angle. Rodrigues and Swartzlander [24]
proposed a 50% reduced iterative CORDIC algorithm,
by using dynamic angle selection which recodes the
angle. Aytore and Alkar [25] used additional logic and
control circuitry to reduce the number of iterations, by
involving diversified iterations. Hu and Naganathan
[26] also proposed a 50% reduced iterative CORDIC al-
gorithm, but it works only for fixed number of angles

which should be known in advance. Higher Radix
CORDIC algorithms have also been used for the reduc-
tion in iterations. Antelo et al. [27] proposed a radix-4
representation for si in which the rotations are chosen
from a set {+2,+1,0,-1,-2} of four possible iterations, but
has more area overhead. Phatak et al. [28] proposed a
double rotation technique in which the values of si and
si+1 are set using a prediction technique. Parallel angle
coding is also reported in the literature at the cost of
an increase in micro-rotations compared to Standard
CORDIC algorithm [29-31]. Kao et al. [32] proposed the
use of encoded angle to directly compute the initial it-
erations using look-ahead approach at the cost of area
overhead. Kamboh and Shoab [33], [34] proposed an
IS-CORDIC architecture which computes the values of
sine and cosine in a single cycle.

The CORDIC algorithm can be implemented in soft-
ware on an embedded processor. But software solu-
tions running on a processor takes a lot of clock cycles
compared to the dedicated hardware implementa-
tions. The research on the sources of inefficiency in var-
ious applications showed that 90% of the program run-
time and energy is utilized by only 10% of application
code [46]. This small portion of the applications which
becomes a performance bottleneck can be efficiently
managed by implementing them in hardware as spe-
cialized accelerator blocks [35-38]. High data rates in
modern signal processing and communication sys-
tems can only be delivered by dedicated hardware so-
lutions. Today’s embedded systems use processor core
with different hardware accelerators in order to speed
up certain portions of the application code. This het-
erogeneous approach reaps the benefits of program-
mability of an embedded processor and efficiency of
specialized hardware accelerator blocks. Most of the
embedded processors today contain various dedicated
hardware blocks to perform a wide range of communi-
cation system tasks efficiently. These include MAC, TCP/
IP, Ethernet, CRC, and CAN etc. Implementing CORDIC
as a hardware accelerator will be effective in program-
ming systems where a series of values of sine and co-
sine are required to be computed.

The rest of the paper is organized as follows: in the
next section, the theoretical background of Standard
CORDIC algorithm is presented. Later, we describe the
implementation of hardware accelerator based on the
Standard CORDIC algorithm. Subsequently, we de-
scribe a Modified CORDIC algorithm and we use this
technique to implement a more efficient CORDIC ac-
celerator. Finally, we summarize our conclusions.

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

199

2 Standard CORDIC Algorithm

In Standard CORDIC algorithm we start with a unit
vector and rotate it to the desired angle θ. When the
unit vector reaches the desired angle the x and y co-
ordinates of the unit vector give us cos θ and sin θ, re-
spectively. Mathematically, this can be shown with the
expression below.





−
+

∆∑
−

rotation negativefor 1
rotation positivefor 1

==
1

0=
ii

N

i
where σθσθ (1)

First, the unit vector is rotated by an angle θi and then
by an angle Dθi again. This brings the unit vector to an-
gle Dθi+1, as depicted in Fig. 1. Mathematically, this can
be expressed [34] by Equations (1) and (2).

Figure 1: Standard CORDIC algorithm iterations

 iiiiiiiii θθσθθθσθθ ∆−∆∆++ sinsincoscos=)(cos=cos 1 (2)

iiiiiiiii θθσθθθσθθ ∆+∆∆++ sincoscossin=)(sin=sin 1 (3)

From Fig. 1. we can see that xi = cos θi, yi = sin θi and
similarly xi+1 = cos θi+1, yi+1 = sin θi+1

Substituting these in Equations (2) and (3), we get
Equations (4) and (5) as given below.

 iiiiii yxx θσθ ∆−∆+ sincos=1 (4)

 iiiiii yxy θθσ ∆+∆+ cossin=1 (5)

Equations (4) and (5) can be expressed in matrix form
as

















∆∆

∆−∆









+

+

i

i

iii

iii

i

i

y
x

y
x

θθσ
θσθ

cossin
sincos

=
1

1 (6)

By taking cos Dθi common, we get Equation (7)

















∆

∆−
∆









+

+

i

i

ii

ii
i

i

i

y
x

y
x

1tan
tan1

cos=
1

1

θσ
θσ

θ (7)

By using the trigonometric identity

i
i θ

θ
∆+

∆
tan1
1=cos

2

To avoid multiplication we get Equation (8)

i
i

−∆ 2=tan θ (8)

Equation (8) can also be expressed as Dθi = tan-12-i.

Substituting Equation (8) in (7) we get the following
Equation.
















 −

+








−

−

−
+

+

i

i
i

i

i
i

i
i

i

y
x

y
x

12
21

21
1=

2
1

1

σ
σ

 (9)

Let,








 −

+ −

−

− 12
21=,

21
1=

2 i
i

i
i

iiik σ
σσ

Then Equation (9) can be expressed as


















+

+

i

i
ii

i

i

y
x

K
y
x

σ=
1

1 (10)

Initially, the index i=0, thus the Equation (10) can be
given for i=0 as


















0

0
00

1

1 =
y
x

RK
y
x

 (11)

and for index i=1, we have


















1

1
11

2

2 =
y
x

RK
y
x

 (12)

Substituting the value of










1

1

y
x

 from Equation (11) into
(12) we get


















0

0
1010

2

2 =
y
x

RRKK
y
x

 (13)

Thus Equation (10) for indices i=N-1 becomes

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

200

















−−

0

0
12101210=
y
x

RRRRKKKK
y
x

NN
N

N (14)

All the Ki are constants and their product can be com-
puted as a constant k, so we get

i

N

i
NKKKKK

2

1

0=
1210

21
1=...=

−

−

−
+

∏ (15)

Finally we get Equation (16) as given below

















− 0

...=
sin=
cos=

1210
K

RRRR
y
x

N
N

N

θ
θ

 (16)

2.1 Hardware Mapping of Standard CORDIC

For efficient hardware implementation the Standard
CORDIC algorithm is listed as follows:
- To simplify the hardware θ0 is set to the desired

angle θd and θ1 is computed as given below

 01
001 2tan= −−σθθ

Where, s0 is the sign of θ0 and initialize as x0 = k and y0
= 0.

- The algorithm then performs N iterations for i
= 1,2,...,N-1 and computes the following set of
Equations

1=1=0)>(−iii elseif σσθ

i

i
iii yxx −

+ − 2=1 σ (17)

i

i
iii xyy −

+ + 2=1 σ (18)

 i
iii

−−
+ − 2tan= 1

1 σθθ (19)

All the values for tan-12-i are precomputed and stored
in an array.

- The final iteration generates the desired results
given below in the two equations

Nd x=cosθ
 Nd y=sinθ

The Standard CORDIC algorithm is naturally suitable for
hardware mapping. The ith iteration of the algorithm
can be implemented as a CORDIC Processing Element
(PE), shown in Fig. 2. The CORDIC PE implements the
Equations (17), (18) and (19) of Standard CORDIC al-
gorithm in hardware and its internal implementation

is shown in Fig. 3. These CORDIC PEs can be cascaded
together for a fully parallel hardware implementation
of Standard CORDIC algorithm as shown in Fig. 4. De-
pending on the number of cycles available for com-
puting sine and cosine values the Standard CORDIC
algorithm can also be folded and implemented as a
time-shared architecture with these CORDIC PEs.

Figure 3: Internal implementation of Standard CORDIC
PE

Figure 4: Pipelined fully parallel architecture of Stand-
ard CORDIC algorithm

2.2 Standard CORDIC Hardware Accelerator

We have developed a novel mixed hardware/software
CORDIC accelerator unit using the Standard CORDIC al-
gorithm. Equations (17) and (18) of Standard CORDIC
algorithm are implemented in hardware using Verilog
HDL hardware description language. While Equation
(19) is implemented in software. We used Xilinx Spar-
tan-6 FPGA SP605 Evaluation Kit [41] and Xilinx Em-
bedded Development Kit (EDK) [39] for the implemen-
tation. Xilinx Microblaze soft core processor system
[40] is used to execute the software part of Standard
CORDIC accelerator. There are two ways to integrate a
hardware accelerator core into a MicroBlaze based em-
bedded processor system. One way is to connect the
accelerator through the Processor Local Bus (PLB). The
second way is to connect it using a dedicated Fast Sim-
plex Link (FSL) bus system [42]. First, PLB was tried but

Figure 2: Standard CORDIC Processing Element (PE)

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

201

it was taking more cycles. The reason for this is the fact
that it is a traditional memory-mapped transaction bus.
Later, it was decided to integrate our Standard CORDIC
accelerator block with the MicroBlaze processor system
using a dedicated FIFO style FSL bus as shown in Fig. 5.

Figure 5: CORDIC Accelerator with MicroBlaze Proces-
sor System

First, the Standard CORDIC algorithm was implement-
ed in C programming language. It was executed on
MicroBlaze processor using Xilinx Software Develop-
ment Kit (SDK) [39]. The cycle count for the software
implementation of Standard CORDIC algorithm was
measured using the XPS hardware timer block. The Mi-
croBlaze processor takes 933 cycles to compute the val-
ues of sine and cosine. While executing the complete
software implementation of Standard CORDIC algo-
rithm. In the next step, Verilog HDL code of the hard-
ware part of Standard CORDIC accelerator was imple-
mented. It was verified and synthesized using Xilinx ISE
design suit [39]. Table 1 shows the Synthesis results of
Time Shared Standard CORDIC algorithm and Standard
CORDIC hardware accelerator block. Standard CORDIC
algorithm having N iterations has a latency of N times
the delay of a single iteration. Here, N represents the in-
ternal word length. The Time Shared Standard CORDIC
algorithm and Standard CORDIC hardware accelerator
block were synthesized on 7vx485tffg1157-3 Virtex-7
FPGA device. This FPGA device uses a 28nm technology

and gives a critical path delay of 51.52ns and 51.408ns
respectively. As in the case of Standard CORDIC hard-
ware accelerator block we have implemented θi Table
in software. Thus no RAM is used. The mixed hardware/
software implementation of Standard CORDIC algo-
rithm is area efficient as it saves two 16-bit adders as
shown in Table 1.

Table 1: Synthesis results of Time Shared Standard
CORDIC algorithm and Standard CORDIC Accelerator

Time Shared Stand-
ard CORDIC

Standard CORDIC Ac-
celerator

Max Freq (310/16)=19.3 MHz (311/16)=19.4 MHz
Latency 3.220x16 = 51.52ns 3.213x16 = 51.408ns

RAMs 16x16-bit RAM 0
Adders 2x16-bit, 4x22-bit 4x22-bit

Counters 1x4-bit 1x4-bit
Multiplexers 6 4

Logic Shifters 2 2
Slice Registers 108 92

Slice LUTs 344 282
Slices 148 139

Fig. 6 shows the architecture of Standard CORDIC hard-
ware accelerator unit. The Standard CORDIC accelera-
tor was attached with the Microblaze processor system
via FSL bus using Xilinx Platform Studio (XPS) [39].
Later the software part of Standard CORDIC accelera-
tor was implemented in C programming using Xilinx
SDK. The predefined C functions of SDK were used to
communicate with hardware part of Standard CORDIC
accelerator via FSL bus. In the software part of Standard

Figure 6: Standard CORDIC Hardware Accelerator Block
Figure 7: Flow chart for Standard CORDIC Accelerator
Implementation

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

202

CORDIC accelerator the values for tan-12-i are precom-
puted and stored in an array. Equation (19) is executed
for every iteration of Standard CORDIC algorithm using
C programming language. The sign bit of θi is sent via
FSL bus to the CORDIC hardware accelerator which ex-
ecutes Equations (17) and (18) in hardware. For every
iteration of Standard CORDIC algorithm as shown in
Fig.3. After the final iteration, we get values of sine and
cosine via FSL bus from the Standard CORDIC accelera-
tor by using predefined C functions in SDK. Fig.7 shows
the steps involved in the computation of sine and co-
sine using mixed hardware/software Standard CORDIC
accelerator.

The cycle count for mixed hardware/software imple-
mentation of Standard CORDIC algorithm was meas-
ured using the XPS hardware timer block. The mixed
hardware/software implementation of Standard
CORDIC algorithm takes 601 cycles to compute the val-
ues of sine and cosine. The energy dissipation was cal-
culated for both the implementations, shown in Table
3. Our evaluation shows that an accelerated embedded
processor datapath is 35% more cycle efficient, than a
datapath lacking Standard CORDIC accelerator. The
design also leads to 34% energy reduction. This mixed
hardware/software implementation is also area effi-
cient as we implemented the Equation (19) of Standard
CORDIC algorithm in software on a MicroBlaze proces-
sor, which resulted in saving two 16-bit adders. Obvi-
ously, if we implement all the three Equations (17), (18)
and (19) of Standard CORDIC algorithm in hardware it
will be a faster solution. Thus it’s a trade-off between
area and execution time.

3 Modified CORDIC Algorithm

The Standard CORDIC algorithm is dependent on si for
making a decision of whether to do addition or sub-
traction, in Equations (17), (18) and (19). This algorith-
mic limitation is the reason for taking more cycles for
computation of desired results. To make this algorithm
fast and suitable for parallel implementation we need
to make some modifications in the Standard CORDIC
algorithm. In Standard CORDIC algorithm we assumed
that θ is the summation of N positive and negative
micro-rotations of angles Dθi as shown in Equation
(1). The θ can also be represented in a binary form for
micro-rotations [34] as shown in Equation (20) below

{0,1}2=

1

0=
∈−

−

∑ i
i

i

N

i
bforbθ (20)

Here, bit bi decides between a positive rotation of 2-i or a
zero rotation, for each term in the summation. To make

this expression useful for hardware implementation we
need to make the constant K in Equation (15) data in-
dependent by recoding the Equation (20) to only use
+1 or -1. For fixed point implementation of CORDIC, the
desired angle θd is represented as θ1.Ν-1. Here the most
significant bit (MSB) is used for representing the sign of
integer value and N - 1 bits are set aside for fractional
part of N-bit θ. The expression (20) can be represented
after recording by Equation (21) as

{0,1}1,2=222=2 01)(

1

0=

1

0=
∈−−+ −−+−

−
−

−

∑∑ iii
Ni

i

N

i

i
i

N

i
rwherebrrb (21)

To manage the constant factor (2-0 -2-N) in the recoding
of Equation (21), an initial fixed rotation Qinit is given.
The recoding of bis as ±1 helps in making K a constant
and its value is equal to [34].

)(2cos= 1
1

0=

−
−

∏
N

i
K

The initial rotation is applied first offline given below by
the three equations

)2(2= 0 N
initQ −− −

)(cos=0 initQkx

)(sin=0 initQky
The following equations are computed for i = 1,2,3
N-1 iterations as

i
i

iii yrxx −−
+ − 2tan= 1

1

ii
i

ii yxry +−−
+ 2tan= 1

1

Here, the values of ri are precomputed. Unlike si, these
iterations don’t need to compute Dθi as was required in
Standard CORDIC algorithm. The final iteration gener-
ates the desired results as

Nd x=cosθ
 Nd y=sinθ
One issue in modified CORDIC algorithm which needs
to be solved is the elimination of multiplication by tan
2-i in every iteration. As tan θθ for small values of θ,
this results in converting multiplication into simple
shift by 2-i. So we get

 4>22tan iforii −− ≈ (22)

This approximation does not affect the precision of
desired output results [29], [44]. We can precompute
the values for the first four iterations and store them
in a ROM. In the hardware implementation of the algo-
rithm, we can use these precomputed values for initial
M iterations from a ROM. The ROM address for these

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

203

precomputed values is calculated using M most signifi-
cant bits (MSBs) of θ as given below

 0
1

2
1

1
0 2...22= −

−− +++ M
MMindex θθθ (23)

x[M-1] and y[M-1] values are accessed from ROM and
the remaining values of x[k] and y[k] are computed
with the help of approximation of Equation (22). This
results in converting multiplication by tan 2-i into sim-
ple shift by 2-i. This transformation helps in fully parallel
hardware implementation of the algorithm for better
performance. We can combine various iterations in the
CORDIC algorithm to increase the performance and
reduce the hardware [45]. As the iterations are not de-
pendent on the values of Dθi in the modified CORDIC.
Thus, we can substitute the values of previous itera-
tions into the current iteration. For M=4 indexing into
the tables, we get values of x4 and y4. Substituting these
values for i=5, we get Equations (24) and (25) as given
below

4

5
545 2= yrxx −− (24)

54

5
55 2= yxry −− (25)

For i=6, we get Equations (26) and (27) as provided be-
low

5

6
656 2= yrxx −− (26)

55

6
66 2= yxry −− (27)

Substituting the expressions for x5 and y5 from Equa-
tions (24) and (25) into Equations (26) and (27), we get
the following equations

4
18

765
7

7
6

6
5

5

4
13

76
12

75
11

657

)2222(
)222(1=
yrrrrrr
xrrrrrrx

−−−−

−−−

−+−−
+−−

 (28)

4
13

76
12

75
11

65

4
18

765
7

7
6

6
5

57

)222(1
)2222(=

yrrrrrr
xrrrrrrx

−−−

−−−−

+−−+
−+−

 (29)

The terms 2-k with k > P for a P-bit data path makes the
expressions (28) and (29) outside the required preci-
sion and can be discarded. Ignoring these terms and
substituting previous equations into current iteration
we get the value xN and yN, expressed in terms of x4 and
y4 [33, 34]. For P=16, we have

447

17

15=
446

17

13=

445

17

11=
4

17

5=
416

22

22=

xrrxrr

xrryrxx

n
n

n

n
n

n

n
n

n

n
n

n

−
−

−
−

−
−

−

∑∑

∑∑
−−

++
 (30)

447

17

15=
446

17

13=

445

17

11=
4

17

5=
416

22

22=

yrryrr

yrrxryy

n
n

n

n
n

n

n
n

n

n
n

n

−
−

−
−

−
−

−

∑∑

∑∑
−−

−−
 (31)

Expressions (30) and (31) can be reduced to the follow-
ing equations

M

i
i

N

Mi
M

ji
ji

N

Pjiij

N

Mi
yrxrr)2()2(1=cos

1

1=

)(
1

)1(=

1

1=

−
−

+

+−
−

≤++

−

+
∑∑∑ −−θ (32)

M
i

i

N

Mi
M

ji
ji

N

Pjiij

N

Mi
xryrr)2()2(1=sin

1

1=

)(
1

)1(=

1

1=

−
−

+

+−
−

≤++

−

+
∑∑∑ +−θ (33)

We can further optimize the modified CORDIC algo-
rithm by using reverse encoding and mapping the
expressions in ri into two binary constants, which will
require four parallel multipliers and two adders to com-
pute the desired results in a single cycle. The expres-
sions (32) and (33) have two constants given below

)2(=

1

1=
1

i
i

N

Mi
rconst −

−

+
∑ (34)

)2(1=)(

1

)1(=

1

1=
2

ji
ji

N

Pjiij

N

Mi
rrconst +−

−

≤++

−

+
∑∑− (35)

The following Equations (36) and (37) gives the desired
results in a single cycle by using these constants.

mM yconstxconst ×−× 12=cosθ (36)

 mM yconstxconst ×+× 21=sinθ (37)

Figure 8: The optimal hardware design which com-
putes sine and cosine in a single cycle

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

204

The single cycle modified CORDIC design [33, 34] is
shown in Fig. 8. The constants in Equations (36) and
(37) can be inverse coded using Equation (21). The
const1 can be inverse coded as

NMi
i

N

Mi

i
i

N

Mi
br −−−

−

+

+−
−

+

+−∑∑ 222=2
1

1=

1)(
1

1=
 (38)

The bi s are used for computing the constant without
modification. The 2-N term is eliminated by appending
1 to b. MSB of bN and the term - 2-M is eliminated by flip-
ping bM+1 bit and assigning negative weight to it. Thus
const1 can be expressed as

 1)(

2=
11 22= −−

+

−
+ ∑+− i

i

N

Mi

M'
M bbconst (39)

The complement of the bit bM+1 results in the bit b‘M+1.
We can implement Equation (39) in hardware by con-
catenating the bits bi. The const2 can be implemented
by computing tks for i + j = 2M + 1,…,P as tks = rirj, where
k = i+j and k  P. The Equation (38) can be used to in-
verse code the tks and Equation (34) is used to compute
its equivalent as const1. Let N=16 and P=16 holds.
For this the values of tks are computed for i=5,6,7. For
i=5, tk are inverse coded as constant value tk = r5rj, for
j=6,7,...,11 where k = 5+j and k  P.

 k
k

N

Mk

j
P

ij
cjt −

−

+

+−
≤

+
∑∑ 2=2,

1

12=

1)(
5

1=
 (40)

Here, ck = b5 ∼ bj and k = 5+j hold. Then values of t6,
j, t7, j are computed for every index i. The tks are inverse
coded using bks as

 NMk
k

N

Mk

k
k

N

Mk
btbeta −−−

−

+

+−
−

+

+−∑∑ 222=2= 2
1

12=

1)(
1

12=
0 (41)

Equation (41) after some manipulations can be written
as

 1)(

22=

2
120 22= −−

+

−
+ ∑+− i

i

N

Mk

M'
M bbbeta (42)

Similarly, the values of beta1 and beta2 can also be
computed following the same steps for i=6 and i=7, re-
spectively. The const2 can be computed as

2102 1= betabetabetaconst −−− (43)

The inverse coded constants const1 and const2 can be
implemented in Verilog HDL for the desired angle θd,

by the simple concatenation of bits as given below

 1}0],1:[10[5]},{6{=:1 1 bbbconstConstant '~
 6]:[11[5]}}{6{=:2 0 bbcConstant ∧~

7]:[10[6]}}{4{=1 bbc ∧~
 8]:[9[7]}}{2{=2 bbc ∧~

1}0],1:[4[5]},{12{= 000 bccbeta '~
 1}0],1:[2[3]},{14{= 111 bccbeta '~
 1}[0],1[1]},{16{= 222 bccbeta '~
)(400016= 2102 betabetabetahconst ' ++−

3.1 Modified CORDIC Hardware Accelerator

We have developed a second novel mixed hardware/
software CORDIC accelerator unit using the Modified
CORDIC algorithm. In Modified CORDIC algorithm
based accelerator we implemented the two constants
const1 and const2 in hardware using the Verilog HDL.
The four multiplications and two additions in Equations
(36) and (37) are implemented in software. Fig. 9 shows
the block diagram of Modified CORDIC hardware ac-
celerator unit. We used Xilinx Spartan-6 FPGA SP605
Evaluation Kit [41] and Xilinx Embedded Development
Kit (EDK) [39] for the implementation. Xilinx Microblaze
soft core processor system [40] is used to execute the
software part of Modified CORDIC accelerator. The
hardware part of Modified CORDIC accelerator is at-
tached to the MicroBlaze processor system using Fast
Simplex Link (FSL) bus system [42].

Figure 9: Modified CORDIC HW Accelerator

First, the Modified CORDIC algorithm is implemented in
C programming language and it is executed on Micro-
Blaze processor using Xilinx Software Development Kit
(SDK) [39]. The cycle count for the software implemen-
tation of Modified CORDIC algorithm was measured

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

205

using the XPS hardware timer block. The MicroBlaze
processor takes 2971 cycles to compute the values of
sine and cosine while executing the complete software
implementation of Modified CORDIC algorithm. Most
of the processor time is spent while computing the two
constants of Modified CORDIC algorithm. The two con-
stants can be implemented more efficiently in hard-
ware using Verilog HDL by simple concatenation of
bits, compared to software implementation. This is the
reason for implementing the two constants in hard-
ware and doing the four multiplications and two addi-
tions in software. In the next step, Verilog HDL code of
hardware part of Modified CORDIC accelerator was im-
plemented and verified using Xilinx ISE design suit [39].
The 16 precomputed values of xM and yM each for M =
4 in Q2.16 format was generated using MATLAB. These
values are stored in a lookup table (LUT) in hardware
using Verilog HDL for implementing the Equations (36)
and (37) of Modified CORDIC algorithm. The last four
bits of theta desired θd [15 : 12] form the address of this
LUT. The Modified CORDIC hardware accelerator was
attached with the Microblaze processor system via FSL
bus, using Xilinx Platform Studio (XPS) [39].

Table 2: Synthesis results of Modified CORDIC Algo-
rithm and Modified CORDIC Hardware Accelerator

Modified CORDIC
Algorithm

Modified CORDIC
Accelerator

Max Freq 212 MHz 954 MHz
Latency 4.704ns 1.048ns

RAMs 16x36-bit RAM 16x36-bit RAM
Adders 5 x 18-bit 3 x 18-bit

Multipliers 2x(13x18-bit),
2x(18x18-bit)

0

Xors 3 3
Slice Registers 52 64

Slice LUTs 129 82
Slices 57 35

Later, the software part of the Modified CORDIC ac-
celerator was implemented in C programming using
Xilinx SDK. The predefined C functions of SDK are used
to communicate with the hardware part of Modified
CORDIC accelerator via FSL bus. First, the Microblaze
sends theta desired θd through FSL bus to the hardware
part of Modified CORDIC accelerator. This computes
the two constants const1 and const2 in hardware and
sends it along with xM and yM values, obtained from the
LUT to the MicroBlaze processor via FSL bus. Later the
four multiplications and two additions are performed
in software on the MicroBlaze processor, using the
Equations (36) and (37) of Modified CORDIC algorithm.
Fig. 10 shows the steps involved in the computation
of sine and cosine using the mixed hardware/software
Modified CORDIC accelerator.

Figure 10: Flow chart for Modified CORDIC Accelerator
Implementation

Table 3: Cycle count and Energy dissipation at clock
period 20ns

Architecture #Cycles Power
(mW)

Energy*
(μJ)

SCORDIC SW 933 178 3.3214
SCORDIC Mixed 601 181 2.1756
MCORDIC Mixed 64 183 0.2304

*: Energy dissipation = #cycles × clock period× power.

The cycle count for mixed hardware/software imple-
mentation of Modified CORDIC algorithm was mea-
sured using the XPS hardware timer block. The mixed
hardware/software implementation of Modified
CORDIC algorithm takes 64 cycles to compute the
values of sine and cosine. The energy dissipation was
calculated for the Modified CORDIC mixed hardware/
software implementation as shown in Table 3. Our
evaluation shows that a Modified CORDIC accelerated
embedded processor datapath is 14.5 times more cycle
efficient than a datapath lacking a Modified CORDIC ac-
celerator. This design leads to 14 times energy reduc-

Figure 11: Cycle count of different architectures

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

206

tion with a very small area overhead. Fig.11 and 12
shows the cycle count and energy dissipation of differ-
ent architectures, respectively.

Figure 12: Energy dissipation of different architectures

The Modified CORDIC mixed hardware/software im-
plementation is also area efficient as we performed
the four multiplications and two additions of Modified
CORDIC algorithm in software. This code is executed on
the MicroBlaze processor system which results in sav-
ing 2x(13x18-bit), 2x(18x18-bit) Multipliers and 2x(18-
bit) Adders as shown in Table 2. The Modified CORDIC
algorithm and Modified CORDIC hardware accelerator
block were synthesized on 7vx485tffg1157-3 Virtex-7
FPGA device. This FPGA device uses a 28nm technology
and gives a critical path delay of 4.704ns and 1.048ns
respectively as shown in Table 2. The Modified CORDIC
hardware accelerator block has 4.5 times reduced la-
tency compared to Modified CORDIC algorithm. Be-
cause the four multiplication and two addition opera-
tions in the critical path delay have been removed and
these operations are performed in software. The Modi-
fied CORDIC hardware accelerator block has 4.3 times
less latency and takes 4 times less area compared to
Standard CORDIC Time Shared implementation. The
novelty of the design in the use of Modified CORDIC
accelerator is that it takes a single iteration to compute
the values of sine and cosine as compared to the Stand-
ard CORDIC algorithm, which requires N iterations.

Table 4: Delay and Area comparison for FPGA imple-
mentations

Reference Slices Clock(MHz) Latency(ns)
Volder [1] 1111 21.43 46.66
Xilinx [43] 1057 37.70 26.52

Perwaiz [47] 978 139.87 7.15
Zaidi [45] 769 151.73 6.59

Ramesh [48] 373 198.27 5.04
Aguirre [49] 276 83.99 11.90
SCORDIC TS 148 19.3 51.52
MCORDIC
Proposed

35 954 1.048 + SWtime=11.96

Table 4 compares the area and latency of proposed
Modified CORDIC mixed hardware/software imple-
mentation with other referenced CORDIC FPGA im-
plementation designs. Our proposed technique has
reduced area and latency requirements. The latency of
proposed Modified CORDIC mixed hardware/software
implementation is 1.048ns in addition to the time re-
quired to perform the four multiplications and two ad-
ditions in software. This software code is executed on
an embedded processor system using the Equations
(36) and (37) of Modified CORDIC algorithm.

4 Conclusion

We have presented two novel CORDIC accelerator units
using a mixed hardware/software approach. These
CORDIC accelerators were integrated with an embed-
ded processor datapath to enhance the processor per-
formance in terms of execution time and energy effi-
ciency. We used Xilinx Spartan-6 FPGA Evaluation Kit
and Xilinx Embedded Development Kit (EDK) for the
implementation. Xilinx Microblaze soft core proces-
sor system was used to execute the software part of
CORDIC accelerators. These CORDIC hardware accelera-
tors were attached with the MicroBlaze processor using
FSL bus system. The first accelerator was implemented
using the Standard CORDIC algorithm. Our evaluation
shows that the Standard CORDIC accelerated Micro-
Blaze processor datapath is 35% more cycle efficient
than a datapath lacking Standard CORDIC accelerator.
This design also leads to 34% energy reduction. The
mixed hardware/software implementation of Standard
CORDIC algorithm is area efficient as it saved two 16-bit
adders. The second accelerator is implemented using a
Modified CORDIC algorithm. Our evaluation shows that
a Modified CORDIC accelerated MicroBlaze processor
datapath is 14.5 times more cycle efficient than a data-
path lacking Modified CORDIC accelerator. This design
leads to 14 times energy reduction with a very small
area overhead. The mixed hardware/software Modi-
fied CORDIC accelerator is area efficient as it saved four
multipliers and two adders.

5 Acknowledgments

This work is partially supported by the Chinese Acad-
emy of Sciences and The World Academy of Sciences
CAS-TWAS President’s Fellowship 2013-2017.

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

207

6 References

1. J. E. Volder, “The CORDIC trigonometric comput-
ing technique,” IRE Trans. Electron. Computers,
vol. EC-8, pp. 330-334, Sept. 1959.

2. J. E. Volder, “The birth of CORDIC,” J. VLSI Signal
Process., vol. 25, pp. 101-105, 2000.

3. J. S. Walther, “A unified algorithm for elementary
functions,” in Proc. 38th Spring Joint Computer
Conf., Atlantic City, NJ, 1971, pp. 379-385.

4. J. S.Walther, “The story of unified CORDIC,” J. VLSI
Signal Process., vol. 25, no. 2, pp. 107-112, June
2000.

5. D. S. Cochran, “Algorithms and accuracy in the HP-
35,” Hewlett- Packard J., pp. 1-11, Jun. 1972.

6. P. K. Meher, J. Valls, T-B Juang, K. Sridharan, and K.
Maharatna, “50 Years of CORDIC: Algorithms, Ar-
chitectures, and Applications”, IEEE Transactions
on Circuits Systems-I: Regular Papers, vol.56, no.
9, pp. 1893-1907, September 2009.

7. P. K. Meher and S. Y. Park, “CORDIC Designs for
Fixed Angle of Rotation,” IEEE Transactions on VLSI
Systems, vol.21, no.2, pp. 217–228, February 2013.

8. Y. H. Hu, “CORDIC-based VLSI architectures for
digital signal processing”, IEEE Signal Processing
Mag., pp.16-35, 1992

9. Y.H. Hu, S. Naganathan, An angle recoding meth-
od for CORDIC algorithm implementation. IEEE
Trans. Comput. 42(1), 99-102, (1993)

10. T. Srikanthan, B. Gisuthan, Optimizing scaling fac-
tor computations in flat CORDIC. J. Circuits Syst.
Comput. 11(1), 17–33 (2002)

11. C.-S. Wu , A.-Y. Wu and C.-H. Lin “A high-perfor-
mance/low-latency vector rotational CORDIC ar-
chitecture based on extended elementary angle
set and trellis-based searching schemes”, IEEE
Trans. Circuits Syst.II, Analog Digit. Signal Process.,
vol. 50, no. 9, pp.589 -601, 2003

12. C. S. Wu and A.-Y. Wu, “A new trellis-based search-
ing scheme for EEAS-based CORDIC algorithm”,
Proc. IEEE Int. Conf. Acoust. Speech, Signal Pro-
cessing, vol. 2, pp.1229 -1232, 2001

13. E. Deprettere, P. Dewilde, R. Udo, Pipelined
CORDIC architectures for fast VLSI filtering and ar-
ray processing, in IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol.
9 (1984), pp. 250–253

14. E. Antelo, J. Villalba and E. Zapata “A low-latency
pipelined 2D and 3D CORDIC processors”, IEEE
Trans. Comput., vol. 57, no. 3, pp.404 -417 2008

15. M. Jun and K. K. Parhi, “Pipelined CORDIC-based
state-space orthogonal recursive digital filters us-
ing matrix look-ahead,” IEEE Trans. Signal Process.,
vol. 52, pp. 2102-2119, July 2004.

16. E. Antelo, J. Villalba, J.D. Bruguera and E.L. Zapata,
“High Performance Rotation Architectures Based

on the Radix-4 CORDIC Algorithm,” IEEE Trans.
Computers, vol. 46, no. 8, pp. 855-870, Aug. 1997.

17. E. Antelo, J. D. Bruguera and E. L. Zapata “Unified
mixed radix 2-4 redundant CORDIC processor”,
IEEE Trans. Comput., vol. 45, no. 9, pp.1068 -1073
1996

18 J.-L. Sanchez, H. Mora, J. Mora, A. Jimeno, Archi-
tecture implementation of an improved decimal
CORDIC method, in IEEE International Conference
on Computer Design (ICCD), Oct. 2008, pp. 95-100

19. A.J. Morenilla, H.M. Mora, J.-L.S. Romero, F.P.
Lopez, A Fast Architecture for Radix 10 Coordi-
nates Rotation, in IEEE Southern Conference on
Programmable Logic (SPL), Feb. 2007, pp. 39-44

20. L. Vachhani, K. Sridharan, P.K. Meher, Efficient
CORDIC algorithms and architectures for low area
and high throughput implementation. IEEE Trans.
Circuits Syst. II, Express Briefs 56(1), 61-65 (2009)

21. D. De Caro, N. Petra, A.G.M. Strollo, Digital syn-
thesizer/mixer with hybrid CORDIC-multiplier ar-
chitecture: error analysis and optimization. IEEE
Trans. Circuits Syst. I, Regular Papers. 56(2), 364-
373 (2009)

22. S. Aggarwal, P.K. Meher, K. Khare, Scale-free hy-
perbolic CORDIC processor and its application to
waveform generation. IEEE Trans. Circuits Syst. I,
Regular Pap. 60(2), 314-326 (2012)

23. D. De Caro, N. Petra, A.G.M. Strollo, Digital syn-
thesizer/mixer with hybrid CORDIC-multiplier ar-
chitecture: error analysis and optimization. IEEE
Trans. Circuits Systems I, Regular Papers. 56(2),
364-373 (2009)

24. T. K. Rodrigues, Swartzlander, E. E. (2010). Adap-
tive CORDIC: Using parallel angle recoding to ac-
celerate rotations. IEEE Transactions on Comput-
ers, 59(4), 522-531.

25. Aytore, E., Alkar, A. Z. (2010). Highly accurate re-
duced iteration CORDIC processor algorithm. In-
ternational Journal of Electronics, 97(2), 163-176.

26. Y.H. Hu and Naganathan, S. (1993). An angle re-
coding method for CORDIC algorithm implemen-
tation. IEEE Transactions on Computers, 42(1), 99-
102.

27. Antelo, E., Villalba, J., Bruguera, J. D., Zapata, E. L.
(1997). High performance rotation architectures
based on the radix-4 CORDIC algorithm. IEEE
Transactions on Computers, 46(8), 855-870.

28. Phatak, D. S. (1998). Double step branching
CORDIC: A new algorithm for fast sine and co-
sine generation. IEEE Transactions on Computers,
47(5), 587-602.

29. Juang, T. B., Hsiao, S. F., Tsai, M. Y. (2004). Para-
CORDIC: Parallel CORDIC rotation algorithm. IEEE
Transactions on Circuits and Systems I, 51(8),
1515-1524.

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

208

30. Juang, T. B. (2006). Area/delay efficient recoding
methods for parallel CORDIC rotations. Proceed-
ings of Asia Pacific Conference on Circuits and
Systems, pp. 1541-1544.

31. Juang, T. B. (2008). Low latency angle recoding
methods for the higher bit-width parallel CORDIC
rotator implementations. IEEE Transactions on
Circuits and Systems II, 55(11), 1139-1143.

32. Kao, C. C. (2011). High-performance CORDIC rota-
tion algorithm based on look-ahead techniques.
International Journal of Electronics 98(8), 1075-
1089.

33. Hamid Mehmood Allah Ditta Kamboh and Shoab
Ahmed Khan (2014) IS-CORDIC: a fixed-point in-
verse recoded single iteration CORDIC architec-
ture, International Journal of Electronics.

34. Shoab, A. K. (2011). “Digital design of signal pro-
cessing systems: A practical approach” (1st ed).
New York, NY: John Wiley.

35. V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson,
“Zynq-based System for Extracting Sorted Sub-
sets from Large Data Sets”, Informacije MIDEM-
Journal of Microelectronics, Electronic Compo-
nents and Materials Vol. 45, No. 2 (2015), 142-152.

36. Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and
Abdullah Buzdar, “Distance and Speed Measure-
ments using FPGA and ASIC on a high data rate
system” International Journal of Advanced Com-
puter Science and Applications(IJACSA), 6(10),
2015, 273-282.

37. Abdul Rehman Buzdar, Liguo Sun, Azhar Latif
and Abdullah Buzdar, “Instruction Decompressor
Design for a VLIW Processor”, Informacije MIDEM-
Journal of Microelectronics, Electronic Compo-
nents and Materials Vol. 45, No. 4 (2015), 225-236

38. Abdul Rehman Buzdar, Azhar Latif, Liguo Sun
and Abdullah Buzdar, “FPGA Prototype Imple-
mentation of Digital Hearing Aid from Software
to Complete Hardware Design” International
Journal of Advanced Computer Science and
Applications(IJACSA), 7(1), 2016, 649-658.

39. Xilinx Inc. FPGA Design Tools. Silicon Devices.
[Online]. Available: http://www.xilinx.com

40. Xilinx. MicroBlaze. [Online]. Available: http://
www.xilinx.com/tools/microblaze.htm

41. Xilinx Spartan-6 FPGA SP605 Evaluation Kit. [On-
line]. Available: http://www.xilinx.com/products/
boards-and-kits/ek-s6-sp605-g.html

42. Xilinx Fast Simplex Link (FSL). [Online]. Available:
http://www.xilinx.com/products/intellectual-
property/fsl.html

43. Xilinx. CORDIC v4.0. Xilinx LogiCore DS429, pp.
1–29.

44. Madisctti, A., Kwentus, A. Y., Wilson, A. N. J. (1999).
A 100 MHz, 16 bits, direct digital frequency syn-
thesizer with a 100-dBc spurious-free dynamic

range. IEEE Journal of Solid-state Circuits, 34(8),
1034-1043.

45. Zaidi, T., Chaudry, Q., Khan, S. A. (2004). An area
and time efficient collapsed modified CORDIC
DDFS architecture for high rate digital receivers.
Proceedings of INMIC 2004, pp. 677-681.

46. Rehan Hameed, Wajahat Qadeer, Megan Wachs,
Omid Azizi, Alex Solomatnikov, Benjamin C. Lee,
Stephen Richardson, Christos Kozyrakis, and Mark
Horowitz. Understanding sources of inefficiency
in general-purpose chips. SIGARCH Comput. Ar-
chit. News, 38:37-47, June 2010.

47. Perwaiz, A., Kamboh, H. M., Khan, S. A. (2010).
FPGA fabric specific optimization for RTL design.
Pakistan Journal of Engineering and Applied Sci-
ences, 6, 52-57.

48. Ramesh Bhakthavatchalu, Parvathi Nair, Jismi K.,
and Sinith M.S., “A Comparison of Pipelined Paral-
lel and Iterative CORDIC Design on FPGA”, IEEE 5th
International Conference on Industrial and Infor-
mation Systems, ICIIS, Jul 29-Aug 01, 2010.

49. F. Aguirre-ramos, A. Morales-reyes, R. Cumplido,
C. Feregrino-uribe, “An Area Efficient Composed
CORDIC Architecture,” Advances in Electrical and
Computer Engineering, vol.14, no.2, pp.113-116,
2014.

Arrived: 11. 04. 2016
Accepted: 27. 10. 2016

A. R. Buzdar et al; Informacije Midem, Vol. 46, No. 4(2016), 197 – 208

