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Abstract: The chaotic systems offer benefits in diverse domains, including encryption and communication systems, particularly 
in the upkeep of intricate and safeguarded systems. This study introduces a new hyperchaotic system with four dimensions (4D), 
seven parameters, and four quadratic non-linear terms. An extensive analysis is conducted on the suggested hyperchaotic system 
to investigate its dynamic properties, such as chaotic attractors, stability of equilibrium points, spectrum of Lyapunov exponents 
(LE), bifurcation diagram, etc. The proposed system is validated both by experimental tests using an embedded hardware STM32 
microcontroller and MATLAB simulations. The microcontroller-based chaotic systems proposed in the literature and the given 
hyperchaotic system in this study are compared in a tabular form. The outcomes of these trials constantly correspond, offering 
theoretical validation for the utilization of this hyperchaotic system in real-world applications. An application example of an 
autonomous mobile robot (AMR) driven by the presented hyperchaotic system is provided in this work, as efficient and fast terrain 
exploration is a crucial problem in AMR path planning research.

Keywords: chaos; hyperchaotic systems; embedded systems; microcontroller-based implementation; Autonomous mobile robots; 
chaotic path planning

Mikrokrmilniška realizacija novega 4D 
hiperkaotskega sistema in njegova avtonomna 
uporaba za mobilne robote
Izvleček: Kaotični sistemi so koristni na različnih področjih, vključno s šifrirnimi in komunikacijskimi sistemi, zlasti pri vzdrževanju 
zapletenih in zaščitenih sistemov. Ta študija uvaja nov hiperkaotični sistem s štirimi dimenzijami (4D), sedmimi parametri in štirimi 
kvadratnimi nelinearnimi členi. Na predlaganem hiperkaotičnem sistemu je opravljena obsežna analiza, da bi raziskali njegove 
dinamične lastnosti, kot so kaotični atraktorji, stabilnost ravnovesnih točk, spekter Ljapunovovih eksponentov (LE), bifurkacijski diagram 
itd. Predlagani sistem je potrjen z eksperimentalnimi preskusi z vgrajenim strojnim mikrokrmilnikom STM32 in simulacijami v programu 
MATLAB. V literaturi predlagani kaotični sistemi, ki temeljijo na mikrokrmilnikih, in dani hiperkaotični sistem v tej študiji so primerjani v 
obliki tabele. Rezultati teh poskusov se dobro ujemajo, kar ponuja teoretično potrditev uporabe tega hiperkaotičnega sistema v realnih 
aplikacijah. V članku je podan primer uporabe avtonomnega mobilnega robota (AMR), ki ga poganja predstavljeni hiperkaotični sistem, 
saj je učinkovito in hitro raziskovanje terena ključni problem pri raziskavah načrtovanja poti AMR.

Ključne besede: kaos; hiperkaotični sistemi; vgrajeni sistemi; implementacija na osnovi mikrokrmilnika; avtonomni mobilni roboti; 
kaotično načrtovanje poti
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1 Introduction

Chaos theory unveils the fascinating duality of com-
plex systems: governed by deterministic equations 
yet exhibiting seemingly random and unpredictable 
behavior. This paradoxical blend, aptly described as a 
“completely predictable state of confusion” [1], lies at 
the heart of numerous natural and engineered phe-
nomena. Its study sheds light on diverse systems, rang-
ing from weather patterns and ecological dynamics to 
population fluctuations and economic models [2 – 4]. 
Rossler conducted the initial research on the notion of 
hyperchaos [5]. The number of positive LE in the sys-
tem frequently determines how complex the chaotic 
behavior of these systems is. Systems with one or more 
positive LE are considered chaotic, whereas those with 
two or more are considered hyperchaotic.

4D hyperchaotic systems belong to a fascinating class 
of complex systems. These systems are highly sensitive 
to initial circumstances and display complex dynam-
ics, resulting in butterfly effects where small variations 
in the starting point can cause significantly different 
and unforeseen consequences [6]. This very sensitivity, 
however, allows for potential control and manipula-
tion, making them alluring objects of research for en-
gineers and mathematicians alike [6, 7]. An increasing 
number of researchers have started looking for chaotic 
systems with more sophisticated dynamic behaviors to 
increase the security of chaotic information encryption 
and chaotic secure communication [8 – 10].

In recent times, there has been a proliferation of pro-
posed hyperchaotic systems that have gained ex-
tensive utilization across various domains such as 
information processing, neuroscience, electronics, 
communications, and information technology [11] – 
[28]. Their more intricate dynamics have facilitated the 
development of secure communication, audio encryp-
tion, video encryption, and image encryption.

A 4D autonomous chaotic system with cubic non-
linear terms in each equation is presented in [11]. The 
given system can produce complex dynamics over a 
wide range of parameter values, such as chaos, period 
doubling bifurcation, Hopf bifurcation, periodic orbit, 
source, sink, and so forth. The study in [12] delves into 
a novel 4D chaotic system built on cubic non-linear 
terms. The proposed system exhibits two double-wing 
chaotic attractors that exist simultaneously. In Ref [13], 
an efficient method to design S-boxes based on the Qi 
Hyperchaos System is proposed. It is aimed at creating 
more robust S-boxes that can provide diffusion and 
confusion properties together.

A new hyperchaotic attractor has been proposed by 
combining a uniform flux-controlled memristor and a 
cross-product term to the 3D autonomous chaotic sys-
tem [14]. In the study conducted in [15], a 4D chaotic 
system includes four non-linear terms and four variable 
parameters. In [16], a hyperchaotic system with a but-
terfly effect is given. Numerical simulations and circuit 
implementation investigate the system’s fundamental 
dynamic properties.

Embedded hardware such as Field Programmable Gate 
Arrays (FPGAs) are widely used to simulate and control 
hyperchaotic systems [17] – [20]. A five-dimensional (5D) 
hyperchaotic system is presented and realized in FPGA 
[17]. It has an exponential-term and memristive model. 
The fundamental properties are examined using bifurca-
tion diagrams, phase diagrams, and the LE. 4D and 5D 
hyperchaotic systems based on the classical Sprott-C 
three-dimensional (3D) system are presented in [18]. The 
proposed systems were realized by an FPGA and dem-
onstrated by an experimental result. The main charac-
teristics of the proposed system are demonstrated using 
LE spectra, phase diagrams, and bifurcation diagrams. A 
multistable 4D hyperchaotic system is implemented us-
ing an FPGA and a MultiSim circuit simulator in [19]. The 
fundamental characteristics of the suggested system are 
also analyzed. In [20], a 4D hyperchaotic system is pro-
posed. There are two nonlinear terms among the nine 
terms in the presented system’s dynamics. Additionally, 
the system exhibits multistability behavior within a cer-
tain range. Phase plots, Lyapunov spectra, Kaplan-Yorke 
dimension, and bifurcation diagrams are utilized to ex-
amine the system’s intricate dynamic behavior. The im-
plementation of FPGA is also realized.

Real-time capabilities, low costs, power consumption, 
connectivity, and digital signal processing all contrib-
ute to the STM32’s widespread use in numerous indus-
tries, including communications, industrial automa-
tion, control, and the Internet of Things (IoT) [21] – [26]. 
Some researchers have worked on the realization of 
chaotic systems using microcontrollers such as Ardui-
no, STM32, PIC18F, etc. 

Based on a 3D Lü chaotic system, a 4D hyperchaotic sys-
tem is built in [21]. The properties of the presented sys-
tem, including chaotic attractors, the spectrum of LE, 
equilibrium point stability, and the bifurcation diagram, 
are investigated. Experimental validation is performed 
on STM32 embedded hardware. The simulations us-
ing Matlab and Multisim were also completed. In [22], 
a novel class of hyperjerk chaotic systems exhibiting 
megastability is introduced. Using the Lyapunov spec-
trum and bifurcation diagrams, different dynamical be-
haviors of one of the proposed systems are examined. 
For one of the suggested systems, PSpice simulation 
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and PIC18F microcontroller realization are performed. 
An FO 3D system derived from a modified Chua’s circuit 
system is introduced in [23]. Bifurcation analysis, multi-
stability, and coexisting attractors are investigated. A 
microcontroller-based 3D FO system was implemented 
with an Arduino UNO board. In addition, PSpice simu-
lations are done. Reference [24] introduces a novel 4D 
autonomous hyperchaotic system that is built upon 
the 3D chaotic system described in [25]. Numerical and 
analytical studies of the dynamic properties are inves-
tigated. The LEs are calculated. The presented system 
is simulated and implemented using a Proteus circuit 
simulator. In addition, two external digital-to-analog 
converters (DACs) and a 16-bit dsPIC microcontroller 
are utilized to operate the system. An autonomous cha-
otic system in 3D is introduced in [25]. This system pro-
duces a chaotic attractor through the changing of two 
parameters. The dynamic properties were investigated 
analytically and numerically through the utilization of 
an electronic circuit consisting of operational amplifi-
ers (OAs). Its microcontroller-based realization was im-
plemented with the PIC32 and external DACs. In [26], 
a 3D chaotic system with five terms is introduced. The 
MATLAB/Simulink program uses numerical simulations 
to demonstrate how the system is synchronized. The 
secure communication implementation is done on the 
STM32 development board. The dynamical behaviors 
of the suggested system, including equilibria, bifurca-
tion, phase plains, time series, and LE, are analyzed. A 
chaotic 3D attractor with seven terms involving a line 
and unstable equilibria is proposed in [27]. A compre-
hensive analysis is conducted on the intricate dynami-
cal behavior of the system through the examination of 
its equilibria, LE, and bifurcation diagram. Analog cir-
cuit implementation and numerical and PSpice simula-
tions are utilized to analyze the periodic states of the 
system. The realization of the system is performed uti-
lizing an STM32 microcontroller. A 4D chaotic system 
is developed, and its dynamic behaviors are examined 

in Reference [28]. The system is implemented using 
analog active components and validated using PSpice 
simulation. The C8051 8-bit microcontroller-based ran-
dom number generator, which uses the proposed cha-
otic system is designed. The comparison of the chaotic 
systems using the embedded microcontrollers in the 
literature with the present hyperchaotic system in this 
work is shown in Table 1.

As seen in Table 1, some of the chaotic circuits using 
microcontrollers proposed in the literature are 3D im-
plementations [23], [25] – [27]. Some of these circuits 
do not exhibit hyperchaotic behavior [22], [23], 25 - 28]. 
They contain a limited number of non-linear terms 
[22] – [25], [28] and a smaller number of variable pa-
rameters [22], [26], [27]. Chaos applications have been 
implemented using low bit size microcontrollers [22], 
[23], [28]. It can be concluded that the hyperchaotic 
system presented in this work is advantageous com-
pared to similar studies proposed in the literature.

The main goal of path planning research is to construct 
an AMR system that can completely cover any environ-
ment containing dynamic or static obstacles at a given 
time. Due to the unpredictable nature of chaos, chaotic 
systems are one of the methods used in path planning. 
In the literature, studies on chaotic path planning using 
various chaotic equations such as Lorenz, Chen, and 
Chua have been presented [29]-[36].

We introduce a new 4D hyperchaotic system in this 
paper. Dynamic properties such as chaotic attrac-
tors, equilibrium point stability, spectrum of LE, and 
bifurcation diagrams are examined in the suggested 
hyperchaotic system. The 4D hyperchaotic system is 
validated using embedded hardware (STM32 micro-
controllers) and MATLAB simulations. A path planning 
application example is provided in the form of an AMR 
controlled by the proposed hyperchaotic system.

Table 1: The comparison of the chaotic systems implemented with the microcontroller.

Ref. Dimension 
of system Type of system Number of 

non-linear terms
Number of variable 

parameters Used MC Bit size of 
MC

[21] 4D Hyperchaotic 3 quadratic terms 4 STM32 32-bit
[22] 4D Chaotic 1 sinusoidal term 1 PIC18F 8-bit
[23] 3D Chaotic 1 quadratic term 4 Arduino UNO 8-bit
[24] 4D Hyperchaotic 2 quadratic terms 4 dsPIC33FJ 32-bit
[25] 3D Chaotic 2 quadratic terms 4 PIC32 32-bit

[26] 3D Chaotic 2 quadratic terms 
and 1 cubic term 1 STM32 32-bit

[27] 3D Chaotic 5 quadratic terms 2 STM32 32-bit
[28] 4D Chaotic 2 cubic terms 5 C8051 8-bit

Prop. 4D Hyperchaotic 4 quadratic terms 7 STM32 32-bit

MC: Microcontroller
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2 Novel 4D hyperchaotic system and its 
analysis 

A novel autonomous hyperchaotic system with 4 di-
mensions, 7 parameters, and 4 quadratic non-linear 
terms are given below:

 x ay bx� �� 				                   (1a)

 y cxz�� 				                   (1b)

  z d exy� �� 				                   (1c)

2 2 u fy gu� �� 				                   (1d)

where x, y, z, and u are the state variables, and a, b, c, 
d, e, f, and g are the positive constant parameters. For 
the presented hyperchaotic system, the initial values of 
the state parameters and the constant parameters are 
selected as (x, y, z, u) = (5.5, 2.8, 0.3, 0.1) and (a, b, c, d, e, 
f, g) = (4.8, 3, 0.8, 5.5, 1, 1.2, 2.58), respectively. The equi-
librium points are calculated as follows:

 
� �1,2 , , , , , 0, ad bd bdfE x y z u

be ae aeg
� �

� � � �� �� �
� �

	 (2)

To examine the stability, the Jacobian matrix is ob-
tained. For this, the differential equations of the system 
must be differentiated for each variable. Accordingly, 
the matrix is found as follows:
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After the equilibrium points, E1 and E2, found are sub-
stituted in the Jacobian matrix, and it is calculated as 
in Equation (4):
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The characteristic equations of the system are found by 
using the matrix found as det (J - λl), where the matrix I 
is a 4x4 diagonal unit matrix. Equation (5a) and (5b) are 
obtained for the equilibrium points E1 and E2, respec-
tively.

             (5a)

           (5b)

Here, in this study, a > 0, b > 0, c > 0, d > 0, e > 0, f 
> 0 and g > 0 are taken. For both equilibrium points, 
roots of the characteristic equation are obtained in two 
different regions of the complex domain. For the first 
equilibrium point E1, λ1 and λ2 are obtained as negative 
real numbers. The other roots λ3 and λ4 are obtained as 
two complex numbers that conjugate with each other. 
These complex numbers have a positive real part. For 
the second equilibrium point E2, λ1 and λ2 are obtained 
as positive and negative real numbers, respectively. 
As in the E1, λ3 and λ4 eigenvalues are obtained as the 
same complex numbers. Hence, this hyperchaotic sys-
tem is unstable. In Table 2, the calculated eigenvalues 
for both equilibrium points are given.

Figure 1 illustrates the LE of the suggested 4D hyper-
chaotic system in time. When the LE of the proposed 
system are calculated with these values, the values 
obtained are L1 = 0.5168, L2 = 0.0155, L3 = -3.5305, and 
L4 = -6.9981 [37]. Here, the positive maximum LE con-
firms the chaotic nature of the signals produced. If the 
Kaplan-Yorke Dimension of the proposed 4D hypercha-

Table 2: Eigenvalues for both equilibrium points.

Equilibrium point λ1 λ2 λ3 λ4

E1 -6.5246 -3.9370 0.4685 + j3.2418 0.4685 - j3.2418
E2 6.5246 -3.9370 0.4685 + j3.2418 0.4685 - j3.2418
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otic system is founded using these exponents accord-
ing to Equation (6), 2.1507 is obtained [38], when j is 

the maximum index to provide 
 

1
0

j

i
i

K
�

�� , by arranging 
the exponents descending order as L1 > L2 > … > Ln. 
 

1

1

j
ii

KY
j

L
D j

L
�

�

� � � 				    (6)

Figure 1: Lyapunov exponents of the system in time.

Furthermore, the Jacobian matrix for the suggested 
system is used to obtain the divergence value ΔV val-
ue, which determines the dissipativity of the system. If 
this ΔV value is negative, the system exhibits chaotic 
attractors and chaotic behavior under specified begin-
ning conditions. The divergence value of the system is 
– 9.5245689. Since ΔV < 0, the system behaves chaoti-
cally.

Table 3: The parameter region showing chaotic behav-
ior.

Parameters Parameter Range of 
Chaotic Behavior

Parameter Range 
of Hyperchaotic 

Behavior

a 0 < a < 14.2
15.6 < a < 20

4.2 < a < 5
9.1 < a < 14.5
15.6 < a < 20

b 0 < b <20 1.7 < b <3.2

c
0.3 < c < 5.2

5.8 < c < 12.8
13.9 < c < 20

0.4 < c  <1.4
2.4 < c < 5.2

d 1.0 < d < 1.6
1.9 < d < 20

7.5 < d < 8.3
9.6 < d < 16.9

e 0 < e < 20 1.5 < e < 3
5.3 < e < 5.9

f 0 < f < 20 0.8 < f < 1.4
13.8 < f < 15.9

g 0 < g < 20 2 < g < 2.7
6.7 < g < 7.4

Lyapunov exponents and bifurcation diagrams of the 
suggested system according to the a, b, c, and d param-
eter values are also given in Figure 2. Table 3 illustrates 
the regions where the proposed chaotic system shows 
chaotic and/or hyperchaotic behavior according to 
its parameters. These ranges are obtained from the LE 
diagrams in Figure 2, and Table 3 shows the ranges in 
which certain parameters exhibit chaotic and hypercha-
otic behavior. These ranges are crucial for understanding 
the dynamic properties of the system. When the initial 
values and constant parameters given above were ap-
plied to the hyperchaotic system given by Equation 

Figure 2: Lyapunov exponents and bifurcation dia-
grams of the system.

(a)

(b)

(c)

(d)
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(1), the Lyapunov spectra seen in Figure 1, the LEs and 
the bifurcation diagrams seen in Figure 2 and Table 3 
were examined, and it was determined that the system 
showed chaotic behavior for a very wide range of values. 
Parameter a exhibits a wide range of chaotic behavior 
with distinct intervals interspersed with non-chaotic re-
gions. For the parameter a, chaotic behavior is observed 
in the ranges 0 to 14.2 and 15.6 to 20. The parameter a 
shows hyperchaotic behavior in the ranges 4.2 to 5, 9.1 
to 14.5 and 15.6 to 20. Parameter b exhibits continuous 
chaotic behavior between 0 and 20, while hyperchaotic 
behavior occurs in the range 1.7 to 3.2. 

The parameter c exhibits chaotic behavior in two dis-
tinct intervals and hyperchaotic behavior in one inter-
val. Parameters d, e, and g show similar patterns of cha-
otic and hyperchaotic behavior over multiple intervals. 
Interestingly, parameter f exhibits a continuous range 
of chaotic behavior, with no hyperchaotic regions with-
in the given parameter range. Overall, the dynamics 
of the system appear to be highly sensitive to param-
eter changes, particularly for parameters a, c, d, and g. 
This sensitivity is evident from the distinct intervals of 
chaotic and hyperchaotic behavior observed for these 
parameters. Further analysis using mathematical tools 
such as Lyapunov exponents could provide more de-
tailed insights into the dynamics of the system and the 
transitions between chaotic and hyperchaotic regimes.

Based on the above-mentioned findings, it can be said 
that the system parameter values that put the system 
into chaotic behavior are in a wide range. In this way, if 
the system parameters are selected at appropriate val-
ues during an application, the proposed 4D hypercha-
otic system will show chaotic behavior without being 
affected much by the tolerances or deviations of the 
circuit components and power supplies to be used in 
the application.

3 Simulation and experimental results 

The system in (1) were defined in the MATLAB program, 
and the changes with time of the state variables were 
obtained for (a, b, c, d, e, f, g) = (4.8, 3, 0.8, 5.5, 1, 1.2, 2.58) 
values. The results obtained are given in Figure 3.

The changes of the variables relative to each other 
were also plotted with the MATLAB program for the 
same (a, b, c, d, e, f, g) values. Figure 4 shows the plots of 
the changes of the variables over time relative to each 
other in the following order: x-y variables in (a), x-u vari-
ables in (b), x-z variables in (c), y-z variables in (d), y-u 
variables in (e), u-z variables in (f ), x-y-u variables in (g), 
x-y-z variables in (h), z-u-x variables in (i), and y-z-u vari-
ables in (j). Figure 4: Change of state variables relative to each other.

Figure 3: MATLAB results for state variables.

	             (a) 		            (b)

	             (c) 		            (d)

	             (e) 		            (f )

	             (g) 		            (h)

	             (i) 			            (j)
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After obtaining the ideal responses of the system 
through simulation processes, the system was also 
physically realized. For this, the electrical signals of the 
state variables were produced using the STM32 micro-
controller. First, two separate DAC outputs were set 
from the STM32 settings. Then, the system state vari-
ables are defined in the coding section. When the ideal 
signals obtained with MATLAB were examined, it was 

observed that negative values were also obtained. At 
the same time, values higher than the voltage value 
that the microcontroller can provide were observed. 
Since the values for these two cases cannot be ob-
tained with the microcontroller, the obtained values 
are normalized to be between 0 V and 3.3 V. The algo-
rithm diagram of the written code is given in Figure 5. 

The time variation of the signals produced by the mi-
crocontroller was measured and displayed with an os-
cilloscope. The oscilloscope results of the variables x in 
Figure 6 (a), y in Figure 6 (b), z in Figure 6 (c), and u in 
Figure 6 (d) have been added.

Figure 5: The flow chart of the microcontroller pro-
gram.

Figure 6: Change of state variable signals obtained 
from the microcontroller over time, (a) x state, (b) y 
state, (c) z state, and (d) u state.

(a)

(b)

(c)

(d)
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As in the simulation steps, the changes between the 
signals obtained with the microcontroller were also 
observed using the XY mode on the oscilloscope. The 
obtained results are given in Figure 7. The measured 
state variable signals relative to each other are in the 
following order: x-y variables in (a), x-u variables in (b), 
x-z variables in (c), y-z variables in (d), y-u variables in 
(e), and u-z variables in (f ).

4 Chaos-driven autonomous mobile 
robot application

Chaotic path planners use chaotic dynamical systems 
to generate paths within an environment. Path plan-
ners are critical for surveillance efforts involving hostile 
agents, as they require unusual routes and comprehen-
sive coverage of the area. When exploring unknown 
terrain online, chaotic path planning algorithms can 
be used without relying on an environmental map. 

These methods give the designer greater control over 
the paths generated than random walk algorithms 
[31]. Recently, many researchers have applied chaotic 
complex systems to mobile robots [29]-[36]. They have 
been used in many applications, such as mobile robot 
patrols, cleaning robots, and many others. However, 
the simulated trajectories of robots in most of the ex-
isting works in the literature show that their coverage 
is generally low.

The two active wheels are controlled by linear velocity 
ν(t) and angular velocity ω(t), as shown in Figure 8. The 
nonlinear dynamic response of the mobile robot’s mo-
tion and steering is determined by two independent 
actuators of analog DC motors that apply appropriate 
torques to the right and left wheels of the mobile robot 
[33]. 

Eq. (7) defines the position vector of the mobile robot’s 
local reference frame, while the global reference frame 
is [Xaxis, Yaxis].

Figure 7: Change of state variable signals obtained from the microcontroller to each other, (a) x-y states, (b) x-u states, 
(c) x-z states, (d) y-z states, (e) y-u states, and (f ) u-z states.

(a)

(c)

(e)

(b)

(d)

(f )
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 � �, ,  Tr r rQ X Y �� 				    (7)

Where Xr(t) and Yr(t) are the position and θr(t) is the ori-
entation of the three-wheeled mobile robot at the mid-
point which indicates the location where the left and 
right wheels meet in the center.

Two primary requirements must be met to confirm the 
mobile robot’s motion and orientation capabilities: 
each wheel must roll in a pure manner and must not 
slip for the mobile robot’s lateral velocity to equal zero, 
as stated in Eq. (8).

� � � �sin cos 0r rX t Y t� �� � �� � 			   (8)

As a results, the navigation equation of a three-wheeled 
mobile robot can be defined as follows [32], [33]:

� �
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� �
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˙

cos      0
sin       0
   0               1 

r

r

r

tX
v t

tY t

�
�

�
�
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		  (9)

where ν(t) = [νr(t) + νl(t)]/2 and ω(t) = [νr(t) – νl(t)]/L. The 
variables νr(t) and νl(t) represent the velocity of the right 
and left wheels, respectively. The direct distance be-
tween both wheels is denoted by L.

Figure 8: Schematic of the three-wheeled AMR naviga-
tion

In order to improve the understanding of the robot’s 
chaotic path planning generator, a discontinuous con-
trol rule is used, which offers advantages in terms of 
terrain scanning time. Under this control rule, the robot 
performs two independent actions. First, to steer the 
robot directly to the next target coordinate, it rotates 

around its center with a constant angular velocity ω(t), 
as defined by Equation (10). Equation (11), which de-
fines the target, is the path taken by the second action, 
which is a straight trajectory with constant velocity ν(t).
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The idea behind employing a chaotic system for navi-
gation is to substitute two state values from the chaotic 
equation for the linear velocities of the left and right 
wheels in the navigation equation. x(t) replaces νr(t) 
and y(t) replaces νl(t). A seven-dimensional system can 
be created by combining the given hyperchaotic sys-
tem and the three-wheeled AMR navigation equation 
in (9).
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Equation (12) shows how the AMR navigates around 
the suggested hyperchaotic system.

A 20×20 m area is used to test the above equation for 
robot motion through numerical simulations. The start-
ing position of the mobile robot is (x = 10 m, y = 10 m) 
and the system is simulated for 1000, 2000, 3000, and 
4000 iterations. Assuming that the limits are located at 
the horizontal and vertical lines x = 0, x = 21 m, y = 0, y 
= 21 m. Wheel distance is L=0.1 m, initial values of state 
parameters and constant parameters are chosen as (x, 
y, z, u) = (5.5, 2.8, 0.3, 0.1) and (a, b, c, d, e, f, g) = (4.8, 
3, 0.8, 5.5, 1, 1.2, 2.58), respectively.  As a results, the 
simulation result generated by MATLAB program the 
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motion trajectory of the AMR for 1000, 2000, 3000, and 
4000 iterations as it is in Figure 9 (a), (b), (c), and (d), 
respectively.

The above simulations also work for different scenarios 
in areas of different sizes and shapes. One such scenar-
io is shown in the three simulations in Figure 10. For 
this, the simulation was repeated by placing a 10×10 m 
obstacle in the 20×20 m area above. In the simulations, 
the starting position of the AMR is (x = 10 m, y = 10 
m), the other parameters are chosen as in the previous 
simulations. The gray areas indicate the obstacles. It is 
possible to place more than one obstacle of different 
sizes in different parts of the area.

Simulations with 2000 and 4000 iterations are shown 
in Figure 10 (a) and (b). As can be seen in Figure 10, 

Figure 9: Simulation result of navigation path of chaos-
driven AMR: a) 1000, b) 2000, c) 3000, d) 4000 iterations.

(a)

(b)

(c)

(d)

Figure 10: Simulation result of the AMR with obstacle: 
a) 2000, b) 4000, and c) 4000 iterations with 1 m safety 
distance.
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the AMR scanned almost the entire obstacle area as 
the number of iterations increased. In some cases, the 
mobile robot entered the obstacle area. To avoid this 
situation, a robot safety distance can be set. This will 
prevent the AMR from entering the obstacle area. An-
other simulation is performed and given as Figure 10 
(c), which shows the simulation results of a 20×20 m 
area with a robot safety distance of 1 m. As can be seen 
in Figure 10 (c), the AMR is prevented from entering the 
obstacle area thanks to the safety distance created.

Figure 11: Simulation result of the AMR with obstacle: 
a) Position vs time, b) Velocity vs time graph for 1 m 
safety distance.

Using acceleration, deceleration, and velocity values 
of the AMR, a trapezoidal velocity profile trajectory 
was generated by interpolating waypoints along each 
dimension (X, Y) using the above parameters in the 
20x20 meter with obstacle area [39]. Figure 11 shows 
the plots the position and velocity with respect to time. 
As can be seen from Figure 11, the velocity of the AMR 
varies unpredictably between -2 and +2 m/s depend-
ing on the parameters of the proposed hyperchaotic 
system.

Figure 12 depicts a graph illustrating the average cover-
age percentage of a specific area by the AMR as a func-
tion of the number of iterations. Each iteration is done 
for one second. Figure 12 presents three distinct curves 
corresponding to 0.05, 0.1, and 0.2 values of the param-
eter L, representing the wheel distance in meters. For 
this example, the coverage percentage was achieved 
at 50% in almost 7900th, 4900th, and 4300th seconds 
respectively for the given L values. Additionally, when 
the times for 90% coverage were examined, it was ob-
served that this value was reached at almost 20600th, 
15600th, and 14300th seconds. At the end of this simu-
lation, that is, at the 40000th second, 98.84%, 99.84%, 
and 99.74% of the 20×20 m area was covered by AMR 
for each wheel distance, respectively. The number of 
iterations of the robot increases the coverage percent-
age also increases. This shows that the AMR scans the 
area more thoroughly over time, leaving fewer gaps. As 
the L wheel distance increases, more area is scanned 
in each second and the coverage percentage increases 
faster. 

Figure 12: Coverage performance of the AMR 

5 Statistical evaluation of randomness

In order for the proposed hyperchaotic system to be 
used in various applications, such as cryptography, it 
must be tested using statistical tests that require long 
bitstreams of random binary bits. The National Institute 
of Standards and Technology (NIST) widely uses the 
NIST SP800-22 test set [40]. 

We first quantized the values from the chaotic system 
to prepare the data for testing. We determined the 
amount of shift to apply to the variables based on their 
current values in order to increase randomness. For in-
stance, we apply a shift operation in the form of 232/x[n] 
to shift the variable x. We provide the procedures used 
to prepare the test data below:

Step 1: x, y, z and u variables were converted to 32 bits.
Step 2: The variable y was shifted and XORed with the 
variable x.
Step 3: The z variable was shifted and XORed with the 
y variable.
Step 4: The values obtained in steps 2 and 3 were 
XORed.
Step 5: The variable u was shifted and XORed with the 
variable z.
Step 6: The variable u is shifted and XORed with the 
variable x.
Step 7: The results of steps 5 and 6 were XORed.
Step 8: The most significant 16 bits of the result ob-
tained in step 4 and the least significant 16 bits of the 
result obtained in step 7 were combined.
Step 9: The least significant 16 bits of the result ob-
tained in step 4 and the least significant 16 bits of the 
result obtained in step 7 were combined.
Step 10: The results obtained in steps 8 and 9 were 
XORed.
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After data preparation, we obtained approximately 14 
Mbits. We tested the data for randomness using the 
NIST 800-22 test tool. There are a total of 15 tests in the 
NIST 800-22 test suite, and the parameters of each test 
are described in detail in [40]. For each test to be con-
sidered successful, the p-value must be greater than 
0.001. The parameters used in the test are shown in 
Table 4, and the results are shown in Table 5. As seen 
in Table 5, all standard tests are passed and the test re-
sults indicate that the proposed hyperchaotic system 
exhibits strong randomness properties suitable for se-
cure applications, such as autonomous mobile robot 
path planning.

Table 4: NIST 800-22 test parameters

Parameter Name Value
Block Frequency Test - block length (M) 12
Non-Overlapping Template Test - block 
length (m)

9

Overlapping Template Test - block length (m) 9
Approximate Entropy Test - block length (m) 10
Serial Test - block length (m) 16
Linear Complexity Test - block length (M) 50

Table 5: Microcontroller-based 4D hyperchaotic sys-
tem NIST 800-22 test results

Test p-value Proportion  Result
Frequency 0.911413 10/10 Passed
Block Frequency 0.534146 8/10 Passed
Cumulative Sums 1 0.350485 10/10 Passed
Cumulative Sums 2 0.739918 10/10 Passed
Runs 0.534146 10/10 Passed
Longest Run 0.534146 10/10 Passed
Rank 0.035174 10/10 Passed
FFT 0.534146 10/10 Passed
Non-overlapping 
Template*

0.474107 10/10 Passed

Overlapping  
Template

0.911413 10/10 Passed

Universal 0.739918 9/10 Passed
Approximate  
Entropy

0.739918 10/10 Passed

Serial 1 0.739918 10/10 Passed
Serial 2 0.534146 9/10 Passed
Linear Complexity 0.122325 10/10 Passed

* Average

6 Conclusion

In this study, a novel hyperchaotic system was defined 
and realized with the embedded hardware STM32 mi-

crocontroller. A table comparing the microcontroller-
based chaotic systems from existing research with the 
hyperchaotic system introduced in this study is provid-
ed. The proposed structure has several benefits when 
compared to similar structures in existing literature.

The equilibrium points of the system were calculated 
using the state variable equations, and the stability of 
the system was investigated with a bifurcation diagram 
and LE. Then, to examine the ideal changes in time of 
these variables, their graphs were plotted according to 
time and relative to each other in the MATLAB environ-
ment, and the simulations were carried out. After that, 
the state variables were generated as electrical signals 
using the microcontroller. These signals were produced 
by converting digital signals to analog signals with a 
microcontroller and were observed on the oscilloscope 
screen. As a result, the experimental results obtained 
by the microcontroller-based implementation of the 
presented hyperchaotic system coincide with the sim-
ulation results from MATLAB.

Efficiently and rapidly exploring a given terrain is a 
critical challenge in path planning research for autono-
mous mobile robots. Therefore, an application example 
of a chaotic path planning of the AMR is provided in 
order to test the presented hyperchaotic system. For 
these simulations, a 20×20 m area with and without 
obstacles is used. The effect of the change in wheel dis-
tance on area coverage is also examined.
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