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Abstract: The enormous cost and time required for launching of a new drug on the market request a redesign of testing approaches 
and validation strategies. Here, microfluidics, micro and nanotechnologies can play an important role, impacting the cell culture model 
or the delivering strategies. We will review the recent lab-on-a-chip strategies for cell culture models with potential application for 
drug screening platforms. Moreover we will overview also the materials involved in the microfluidic assisted cell culture models.
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Sistematičen pregled pretočnih sistemov za celične 
kulture
Izvleček: Uvedba novih zdravil na trg zahteva veliko razvojnega časa in je povezana z ogromnimi stroški. Za znižanje stroškov in 
časa se nujno pojavlja zahteva po preoblikovanje pristopov testiranja in strategij za validacijo ustreznosti zdravil. Tukaj lahko mikro 
in nanotehnologije ter uvajanje mikrofluidnih pristopov odigrajo pomembno vlogo pri izgradnji modelov celičnih kultur ali pa so 
v pomoč pri razvoju strategij za vnosa zdravil. Pregledni članek predstavlja določene nove strategije, ki temeljijo na lab-on-a-chip 
mikrofluidnih pristopih in njihovo praktično uporabnost pri predkliničnem testiranju zdravil. Poleg tega je v članku podan tudi pregled 
biomaterialov, ki se uporabljajo pri izdelavi mikrofluidnih platform, namenjenih raziskavam modelov celičnih kultur.
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1 Introduction

The cost of developing of a new drug is rising exponen-
tially along with every phase of development, reaching 
US$800 million per drug [1]. In this direction, the iden-
tification of the drug potential toxicological profile in 
the earlier development stage became a necessity. On 
the other hand, combinatorial chemistry as well as mo-
lecular biology and genomics understanding have led 
to a rapid growth of the group of novel compounds [2]. 
As a result, in vitro drug metabolism testing platforms 
are gaining increasing importance compared to animal 
model counterpart in the early stage drug screening 
given the high throughput testing capacity. It is not 

surprising to find that tremendous efforts have been 
put into developing suitable in vitro tissue model for 
the perusal of drug development. The main focus is on 
liver, the main organ involved in drug metabolism. In 
vitro models such as isolated perfused livers or liver tis-
sue slices are difficult to use in high throughput appli-
cations despite their close imitation to in vivo hepatic 
tissue. The isolated primary hepatocytes, strike a bal-
ance between high throughput and intact cellular ar-
chitecture [3]. However, isolated primary hepatocytes 
rapidly lose their differentiated functions when cul-
tured using standard cell culture conditions [4]. There-
fore numerous culture models have been developed 
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to prolong their functions. The cell culture models can 
be divided in two major groups based on the modality 
of media refreshing: static culture models and perfu-
sion culture models. For the perfusion culture models 
the media is continuously replaced. As such, O2 and 
nutrients transport, as well as waste removal from cel-
lular local environment improved [5]. For example, it 
has been shown that under perfusion the viability, life 
span and metabolic performance of primary hepato-
cytes improved [6]. The phase I and phase II enzymes 
also showd long term stability in perfusion culture [7]. 
Perfused-cultured hepatocytes responded well to in-
ducer and have shown stable induction of CYPs up to 7 
days [8]. However, the main drawback of the perfusion 
culture system relies in the shear stress induced by the 
flow. A high value of the shear stress could be detri-
mental to cell viability and cell functions in vitro [3, 9]. 

Used on a large scale for application related chemical 
synthesis [10-12], cell manipulation and analysis [13-
19], or drug discovery [20-23], microfluidics can be an 
interesting support for application related tissue engi-
neering [24-26]. 

This article gives an overview on microfluidic related 
cell culture models and focuses on the system dedi-
cated to drug screening. It also succinctly presents the 
materials involved in the construction of the microflu-
idic bioreactors. 

2 On chip cell culture models

‘Organ-on-a-chip’ models allow restatement of in vivo 
tissue-tissue interfaces, biochemical cues and me-
chanical microenvironment. These models offer the 
opportunity of in vitro drug screening and could be al-
ternatives to animal experimentation [27, 28]. On-chip 
models present the advantage of using less cells and 
reagents. In the next sections we will review the main 
cell culture models underlining the contribution of mi-
crofluidic and microtechnology in this direction.

2.1 Cell lines 

Cell lines are well-established cell culture model. Un-
der suitable conditions the cells will proliferate indefi-
nitely. Cell lines are not restricted by limited number 
of cell divisions due to mutations. The limitation is 
also known as Hayflick’s limit [29]. Liver cell lines are a 
popular choice for studying liver function and toxicity 
mechanism in vitro. They are, however, not suitable for 
drug metabolism and toxicity predictions because not 
all metabolizing enzymes are present in cell lines and 
the ones present are not at their normal physiological 

levels. One merit of human cell lines is that they can 
be used to gather information relevant to human body 
functions. Moreover, they are easy to handle and can 
help reduce the use of animals. Disadvantages occur  
because their dependence of gene expression, on pas-
sage number, unstable cells and dedifferentiated cells 
with phenotype no longer resembling that of the cells 
in vivo. Cell lines are also prone to contamination by 
other cell types, which happens with 15-20% of cell 
lines [30]. 

2.2 Liver cell lines 

HepG2 cell line is the most commonly used human liv-
er cell line. It is derived from hepatocellular carcinoma. 
Compared with isolated primary hepatocytes, its level 
of CYP is lower. Another commonly used cell line is 
HepG2/C3A, it is selected for its improved differentiat-
ed hepatocyte phenotype. Both of these cell lines have 
been cultured on chip [31-33]. Another liver cell line 
HepaRG was recently generated. It is reported to be 
more metabolically competent, however it has yet to 
be studied in microfluidic devices [34]. HepG2 was first 
integrated into microfluidic device in 2003 by Leclerc 
et al.[35]. They showed that the cells function properly 
for at least 12 days on their perfusion device. In micro-
fluidic studies of HepG2 cells, the cells were treated 
with various compounds of different concentrations 
to study toxicity. Their viability was determined by live 
dead staining and optical imaging [36-38]. By using 
microfluidic devices, it is possible to achieve multiple 
incubations in one chip and generate concentration 
gradients easily. For high throughput screening of cells, 
this is especially useful. For instance, the PDMS chip de-
veloped by Ye et al [38], (Figure 1), incorporated eight 
identical structures with integrated gradient genera-
tor based on the principle reported by Jeon et al [39]. 
Two inlets are present on chip, for medium and for drug 
mixed with medium respectively. The two liquids were 
mixed in a wide channel then split multiple times to 
generate mixture having different concentration ratios 
with the initial solution. The HepG2 cells can therefore 
be exposed to various concentrations of drugs, and are 
able to be observed directly under a microscope. Eight 
identical structures ensured that eight different com-
pounds can be tested on chip concurrently. The device 
was set up in an incubator at 37 °C with 5% CO2. PDMS 
is gas permeable such that a stable microenvironment 
can be established.

However the expression of metabolic enzyme in HepG2 
is low, making it unsuitable for toxicity prediction. Both 
biotransformation process of drugs and toxicity pro-
files are altered compared with in vivo situations [40]. 
In the mean time it is generally accepted that, cell lines 
can be used to investigate molecular pathways due to 
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their robustness. Another example is the system de-
veloped by Sung et al [41] to monitor CYP activities 
optically. It has a green light emitting LED for excita-
tion and a photodiode for detection. HepG2/C3A were 
cultured in Matrigel on chip. It has been reported that 
cells maintain their functions better in a 3D configura-
tion [42]. Metabolic activities of CYP1A1 and CYP1A2 
were assessed by ethoxyresorufin and were shown to 
have improved functions compared with conventional 
monolayer cultures. Continuous perfusion of medium 
was applied to the cells, to ensure that the cells are 
constantly exposed to fresh medium with fixed nutri-
ent concentration. This device is useful for real time 
monitoring of CYP activities for primary hepatocytes 
as well. Moreover, Carraro et al [43] developed a PDMS 
device to mimic the human hepatic microvascular bed. 
HepG2/C3A cells were maintained up to 10 days. Phase 
I and phase II metabolites were detected during this 
period. The incorporation of primary hepatocytes was 
also feasible. The hepatocytes were not exposed to 
medium flow directly as is the case of in vivo situation 
and the exchange of medium took place by diffusion 
through polycarbonate membrane with pore size of 0.4 
mm. 

2.3 Primary cells 

Primary hepatocytes are generally accepted as a bet-
ter in vitro model to predict in vivo metabolism than 
cell lines [44]. They can be isolated from liver tissue by 
collagenase perfusion, which digests the connective 
tissue [45]. In primary hepatocytes, metabolizing en-
zymes are present at their natural physiological levels. 
Thus they can be used to predict hepatic metabolism 
quantitatively. Although metabolic enzymes are initial-
ly at their physiological levels, CYP-mediated metabo-
lism gradually decreases during extended cultures. To 
prevent this, the cells can be cultured in Matrigel with 
supply of inducers. Alternatively, non-parenchymal 
cells can be co-cultured with primary cells [46-48].

Furthermore, liver anatomy was mimicked by Lee et al 
[49] who fabricated a PDMS device (Figure 2a). The de-
vice featured an artificial liver sinusoid with an artificial 
barrier layer mimicking endothelial barrier layer. Prima-
ry rat and human hepatocytes were maintained for 7 
days. A similar structure was used by Nakao et al [50] for 
bile canaliculi formation. The microfluidic structure al-
lowed the rat primary hepatocytes to align, to form two 
rows like a hepatic cord. This way the bile canaliculi can 
be formed at the interface between cells (Figure 2b).

a)  

b)   

Figure 2: a) Optical image and schematics of the de-
vice resembling a liver sinusoid, cells are cultured in the 
cell area, medium flows around outside of the barrier. 
(Copyright 2007 John Wiley and Sons, Inc.) [49] b) Bile 
caniculi formation in a microfluidic structure: aligning 
of the cells in two lines like a hepatic cord, bile caniculi 
(green color) formation, control in static cell culture 
[50].

Another primary hepatocyte culture chip was fabri-
cated by Griffith lab using microfluidic techniques. He-
patocyte metabolic activities was tested with the chip 
[51]. The 3D culture scaffold was fabricated in silicon 
with deep reactive-ion etching. Primary hepatocytes 
were cultured in the bioreactor for 2 weeks. The level of 
mRNA expression of CYP enzymes, transcription factors 
and phase II drug metabolizing genes were retained. A 
higher throughput version of their device was recently 
developed. It incorporates a pneumatic micropump 

Figure 1: Schematic of the chip developed by Ye et al 
[38], with eight identical structures and gradient gen-
erators. (Copyright 2007 Royal Society of Chemistry).
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and fluidic capacitor to achieve pulseless flow (Figure 
3) [52]. Hepatocytes remained viable and retained ca-
pacity for albumin synthesis during culture. The device 
was placed in a humidified incubator with controlled 
pH and O2 content. The flow rate was set to 250 μL/min.

Figure 3: Perfused microwells for culture of hepato-
cytes with integrated pneumatic pump (Copyright 
2010 Royal Society of Chemistry) [52].

2.4 Spheroid cell culture model

Hepatocytes form aggregates when they are weakly 
adherent or non-adherent to the culture substrate. 
The presence of the 3D cytoarchitecture through the 
re-establishment of 3D cell-cell contacts, together with 
the secretion of extracellular matrix material within the 
spheroid, had been hypothesized to contribute to bet-
ter maintenance of differentiated function compared 
with the traditional matrix overlay [53] and matrix 
monolayer culture [54]. Studies have shown the main-
tenance of the drug metabolizing enzymes in extended 
cultures of spheroids [55] as well as induction of some 
key enzymes in response to prototypical inducers [4]. 
However the presence of necrotic/ hypoxic cells in the 
center of the spheroid due to oxygen diffusional limita-
tions in large sized spheroids [56] as well as the difficulty 
to handle floating spheroids in conventional wells have 
limited their used in long-term metabolism, enzyme 
induction and cytotoxicity studies [57]. An overview of 
the methods to achieve 3D cell culture models using 
microfluidic systems was presented by Choudhury et al 
in [58]. Currently, different techniques are used for cell 
assembling into spheroids. Their key point is promoting 
cell-cell interaction and limiting cell-substrate interac-
tion. A well known technique is hanging drop method 
[59]. This method is relatively simple, but the exchange 
of cell media is challenging [60]. Moreover, the limited 
volume of the drop (50 µL) made this culture method 
less suitable for drug screening applications and dif-
ficult to be translated into large-scale production. An-
other commercially available method (AggreWellTM by 
Stem Cell Technologies) consisted in centrifugation of 
the well-plate [61-63]. Despite the relatively high cost 
of the well-plate, the method also required incubation 
for spheroid formation. Rotational bioreactors (spinner 

flasks) can also be use for spheroid formation, but the 
large shear stress generated limits its application to 
primary hepatocytes [64]. Another classical method, 
liquid overlay involved cell culture on a low adhesive 
layer. The method was simple and inexpensive, but 
induced a large variation of the spheroids’ diameter 
[65-67]. Another method consisted in micropattern-
ing of selective-adhesive structures on a non-adhesive 
substrate [68, 69]. The main advantage of the method 
was the uniform size and distribution of the 3D cellular 
aggregates. Other microfluidic methods involved cell 
trapping barriers [70], bubble or droplet-based meth-
ods [71], microwells in which rotational flow of a cell 
suspension was induced [72, 73], and cell assembling 
by ultrasonic actuation in microwells [74]. An ultrafast 
microfluidic method for cell aggregation in spheroids 
was recently reported by Alhasan et al in [26]. The 
method consisted of combining surface acoustic wave 
(SAW) microcentrifugation with the use of fast gelling 
hydrogel. The method was demonstrated with human 
mammary gland carcinoma cells (BT-474) and with 
mesenchymal stem cells (MSCs). It is relevant to men-
tion that the formation of spheroids was performed in 
standard tissue culture plasticwear. Moreover, the size 
of the spheroid can be simply tuned by selecting the 
power input to the SAW. Another relevant approach 
in spheroid cell culture is the concept of “constrained 
spheroids”(CS) presented by Tong et al in [25]. The CS 
cell culture model overcame one of the most relevant 
problems related to spheroid cell culture. In the static 
culture, due to the turbulence generated by culture 
media change, the spheroids lose their adhesion on the 
substrate. Under perfusion, due to their relatively large 
diameter and fluid velocity, the spheroids are exposed 
to a momentum generated by the Stokes force. This 
momentum removes the spheroid from the substrate 
causing cell loss. In order to overcome this problem, in 
the CS model, the spheroids are trapped and stabilized 
by sandwich configuration between a PEG-AHG-modi-
fied glass and an ultra-thin Parylene C membrane. This 
allowed to maximize mass transfer, and to overcome 
uneven cell count and spheroids size-related issues. 
The glass substrate was modified for more uniform and 
rapid hepatocytes spheroids formation within 1 day, 
allowing for earlier drug testing and perfusion culture 
initiation. The membrane was specifically modified so 
that the hepatocytes in the spheroid will preserve their 
cytoskeleton distribution. The results showed not only 
a better conservation of the cell count but also an im-
provement of the cell function. 

2.5 Intact tissue 

Primary cells can be co-cultured with non-parenchymal 
cells to mimic the natural hepatic architecture after iso-
lation from intact liver tissue. Instead of using isolated 
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cells, it is also possible to collect intact tissue directly 
from the body and perform in vitro assessments. Com-
pared with isolated cells, intact tissues have intact cell 
matrices as well as all cell types and their enzymes, co-
factors and transporters. Thus, they highly resemble the 
in vivo architecture. Intact tissues can be obtained from 
animals or humans by surgery. Two ways have been ex-
ploited so far, namely liver biopsies and precision-cut 
liver slices. Liver biopsies can be obtained by cutting 
liver sample by hand or using biopsy punch, whereas 
precision-cut liver slices are obtained by using Krum-
dieck tissue slicer or Brendel-Vitron tissue slicer.[75] 
Tissue slices of thickness from 100μm can be obtained 
by tissue slicers, the thickness of the slices obtained are 
usually small enough for nutrients and oxygen to dif-
fuse to inner regions. During culture period, the level 
of metabolic enzymes also decreases gradually, as in 
the case of primary hepatocytes. The rate of decline is 
slower compared with primary hepatocytes [76]. Re-
cently, several groups have incorporated precision-cut 
liver slices [77] and biopsies [78].

2.6 Biopsies 

For biopsy, Hattersley et al [78] designed a device 
which consisted of a Y shaped channel with two inlets 
and one outlet. Three chambers with inner diameter of 
3 mm were present for insertion of the biopsy. Tissue 
chambers were located on top of microfluidic channels 
to avoid the direct exposure of tissues to media stream. 
The nutrients were delivered mainly by circulating me-
dium. Regarding the tissue biopsy, the cells further 
away from the medium flow are exposed to lower con-
centration of O2 and nutrients. Since, the hepatocytes 
in vivo are located just a few microns from the blood 
stream, it becomes difficult for cells to survive when 
they are more than a few hundred microns from the 
blood stream [79]. To regulate pH and O2 content, the 
chip was put into an incubator. Lactate dehydrogenase 
and DNA were measured through the outlet of the de-
vice. Morphologies of the cells were also assessed.

2.7 Precision-cut liver slices (PCLS) 

PCLS was first integrated to micro-bioreactor in 1996, 
PCLS were first fixed on a microscope slide with plasma 
clot, while perfusion was performed directly on the 
slide [80]. Fluorescence confocal laser cytometry, fa-
cilitated the assessment of cytochrome P450 distribu-
tion in PCLS. However, only one side of the slice was 
exposed to medium, which hindered the transport 
of nutrients and gases. In addition, enzyme activities 
were not quantified with the help of this device. Con-
sequently another microfluidic device fabricated by 
Khong et al [81] was used to perfuse thick liver slices of 
0.3-1 mm thick. The tissue slice was placed directly in 

medium flow and 7 needles were inserted to the tissue 
slice to facilitate mass transport inside the tissue slice. 
CYP1A and UGT were reported to be stable for up to 3 
days. This device could be used for induction and inhi-
bition studies with PCLS. More recently, van Midwoud 
et al [77] developed a micro-perfusion bioreactor to 
study the rat liver metabolism. The device was fabri-
cated out of PDMS with incorporation of polycarbon-
ate filter and PDMS membranes. In each chamber, PCLS 
of 3 to 4 mm diameter were cultured in a continuous 
flow of medium. The PCLS functionalities remained for 
24 hours, human PCLS were integrated and tested, the 
metabolism and viability were comparable to those of 
conventional well-plate system. Thus, microfluidic bio-
reactor helps to reduce the use of animals for preclini-
cal testing by using scarce human material.

The continuous flow applied to the slices ensured that 
direct analysis of the outflow. An HPLC device equipped 
with UV detection was coupled with the bioreactor to 
achieve real time detection of metabolites [82]. Metab-
olites could immediately be measured upon exposure 
of a slice to medium. Retention of viability could be 
demonstrated. By increasing substrate concentration 
over time, the device was also used to measure inhibi-
tion constant. Only three tissue slices were used, which 
would allow studied to be performed with scarce sam-
ples. Moreover, the device can detect unstable me-
tabolites instantaneously. This is difficult to achieve in 
conventional well-plate system.

2.8 Organs-on-a-chip 

Conventional 2D and 3D cell culture models have 
demonstrated their values in tissue specific biomedi-
cal research. However they may not accurately predict 
in vivo tissue behavior and drug activities due to their 
difficulties in recapitulating multi-scale tissue archi-
tecture, tissue-tissue interface and mechanical cues. 
Microfluidic organs-on-chips have the possibility of 
overcoming these limitations [83]. Organ-on-a-chip 
devices also enable high resolution, real-time imaging 
and various assays of biochemical, genetic and meta-
bolic activities. The first major step in organ-on-chips 
for drug development happened in 2004, when the 
Schuler group designed a microfluidic chip for pharma-
cokinetic studies of multiple cell types interconnected 
by microchannels [84]. The device featured three cell 
culture chambers for lung, liver and other cell types 
on a single silicon chip. It targeted the examination of 
the adsorption, distribution, metabolism, elimination 
and toxicity (ADMET) profile of chemicals in vitro. By 
achieving physiological liquid-to-cell ratio, shear stress 
and liquid residence time, this device paved the way 
for using microfluidic devices to reduce or even replac-
ing animal testing in the pharmaceutical industry. An-
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other organ-on-a-chip devices to investigate crosstalk 
between different organs was designed by Zhang et al 
[85]. This multi-channel 3D microfluidic cell culture sys-
tem features compartmentalized microenvironments 
for drug screening. Liver, lung, kidney and adipose 
cells were simultaneously cultured in 4 compartments. 
The four cell types represent the drug-metabolizing 
and storage capabilities in the human body. This kind 
of multiorgan system can potentially be used for drug 
testing, food safety testing as well as pathogen testing.

Over the past decade, a lot of devices have been devel-
oped to support PK-PD modeling. Acetaminophen is 
one of the commonly studied drugs in microfluidic de-
vices. In a study done by Mahler et al [86], HepG2 cells 
were coupled with intestinal cells. They demonstrated 
that administration of acetaminophen caused glu-
tathione depletion in intestinal cells. A dose dependent 
hepatotoxicity response was also observed. The result 
obtained from the microchip was similar to in vivo ex-
perimental results.

In spite of the swift advances of microfluidic devices, 
certain hepatic functions such as bile duct clearance or 
sustained production of metabolic enzymes (as com-
pared with the 1-year lifespan of hepatocytes in vivo) 
still cannot be completely modeled using chips. The 
presence of flow might not always be beneficial either, 
some metabolites accumulate in small static microen-
vironments that are undetectable in flow conditions 
due to sensitivity issues [87].

2.9 Fish-on-a-chip

Zebrafish and especially its embryo, is a vertebrate 
model for study in embryogenesis, development bi-
ology, cell biology and genetics and is becoming an 
important model for preclinical drug discovery appli-
cations. The overall drug toxicity in Zebrafish embryo 
is comparable with that observed in mammals [88]. 
Due to shorter development time and cheaper mainte-
nance, Zebrafish model is cost-effectiveness. Zebrafish 
embryos are small, easily obtained in large numbers, 
accessible immediately after fertilization, they are op-
tically transparent and pigmentation mutants exhibit 
extended period of transparency [89]. The embryos 
are permeable to peptides, drugs and dyes. Also, spe-
cific genes can be inhibited or mutated and the entire 
genome of Zebrafish has been sequenced and can 
be accessed online [88, 90]. The drug studies on em-
bryos, mostly performed on 96 well microtiter plates 
[91] were not suitable for dynamic long-term cultur-
ing and imaging of embryos. For this reason “fish-on-
chip” solution are desirable. Martin et al [92] proposed a 
high-throughput vertebrate screening platform (VAST) 
in which the fish embryos were manipulated and ori-

ented for cellular resolution imaging. Their platform 
permitted large-scale chemical screens. Drug stud-
ies on Zebrafish and Medaka embryos [93],[94] have 
already found their way into microfluidic systems. A 
study related to the delivery of foreign compounds 
into the embryos by electroporators is presented in 
[95]. Research on Zebrafish embryonic development 
using microfluidic devices are presented in [96] and 
[97]. A programmable and automated chip-based plat-
form, which facilitated the accurate and reproducible 
in vivo drug dynamics and studied Zebrafish embryos 
is presented in [98]. Akai et al [99] proposed a 3D mi-
crofluidic embryo array for real-time developmental 
analysis of transgenic Zebrafish embryos. The PMMA 
chip allowed automatic loading, docking and exposure 
to micro- perfusion treatment of the embryo. An opto-
microfluidic device that combined a light modulation 
system with a microfluidic circuit was developed to de-
tect the oxygen consumption rate of a single develop-
ing Zebrafish. It was presented by Huang et al in [100]. 
Erickstad et al [101] proposed microfluidic system to 
observe different behavioral responses of Zebrafish 
larvae to different levels of hypoxia. A review of fish on 
chip platforms is presented in [102].

3 Materials for bioreactor fabrication 

A key point in the correct design of the microfluidic 
bioreactor is the correct selection of the materials in-
volved in its fabrication. A detailed analysis of the ma-
terials involved in cell culturing can be found in [103]. 
The selection of these materials is critically connected 
with the application. For drug screening applications, 
for example, fabrication of the microfluidic reactor in 
glass/silicon technology can be more suitable due to 
the low absorption of drug and metabolites. Other-
wise, for application such as cell proliferation or cell 
migration polymeric materials are more suitable. Three 
main groups of materials can be identified: polymer, 
silicon-based materials and metals.

3.1 Polymers 

Poly(methyl methacrylate) (PMMA), polycarbonate 
(PC), polystyrene, polyurethane, and poly(dimethyl 
siloxane) (PDMS) are common polymers found in mi-
crofluidic technologies [104, 105]. PDMS is the most 
used polymer. Soft lithography, developed by the Whi-
tesides group [106] is usually used to fabricate PDMS 
devices. Advantages of PDMS include cost effective-
ness, fast prototyping ability, good adhesion to glass, 
good gas permeability and transparency [107]. On 
the other hand, PDMS is a hydrophobic material. This 
makes it easy to absorb organic solvents, hydropho-
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bic drugs and metabolites. The aspect ratio achievable 
with PDMS is 2:1. There are methods to enhance the 
surface properties of PDMS. Some of the approaches 
are: surfactants modification, polyelectrolyte modifica-
tion, covalent modification, chemical vapor deposition, 
phospholipid layer modification and protein coating 
modification [108, 109]. Consequently, various PDMS 
microbioreactors have been developed for hepatocyte 
culture. Leclerc et al. developed a PDMS microbioreac-
tor for perfusion culture of fetal human hepatocytes 
[110]. During the one-week perfusion period, the cells 
showed good attachment and proliferation. The albu-
min expression was higher than that of static culture 
by about 4 times. PDMS bioreactors have been dem-
onstrated as a good option for large-scale hepatocyte 
culture due to its good gas permeability. One of the 
first PDMS perfusion bioreactors demonstrating large-
scale culture of HepG2 was developed by Leclerc et 
al [111]. They achieved culture of HepG2 with density 
similar to that of a macro-scale bioreactor [49]. Cyclic 
olefin copolymers (COCs) have been used by Raasch 
et al [112] for manufacturing of a microfluidic devices 
for endothelial cell culture in order to overcome limita-
tions of PDMS material. Besides PDMS devices, PMMA 
material is also commonly used in MEMS fabrication. 
Patterns and microchannels can easily be fabricated 
onto PMMA surfaces using electron beam lithography 
[113] or laser ablation [114].

3.2 Silicon-based materials 

Silicon-glass technology is one well established process 
for microfluidic devices [115, 116]. Their biocompatibil-
ity and applications in cell culture have been studied 
extensively. Silicon [117], silicon dioxide [117], silicon 
nitride [118-120], silicon carbide [121, 122] and SU-8 
substrate [123] have all been shown to be non-cytotox-
ic. Amorphous silicon, for example, has been demon-
strated as a good substrate for growth of renal proxi-
mal tubule cells [124, 125]. After pretreatment of ECM 
proteins, single-crystal silicon and polysilicon chips are 
shown to promote attachment of renal tubule cells. 
Cell functions and behaviors are also similar to cells cul-
tured in plastic cell culture flasks. Renal cells cultured 
on silicon chip showed good expression of tight junc-
tion proteins like ZO-1 and high level of trans-epithelial 
resistance (TER), a measure of tight junction formation 
function [126]. Porous silicon is also frequently used in 
cell culture and cell adhesion studies. The surface of 
porous silicon can be modified by oxidation, saliniza-
tion and collagen coating to promote cellular attach-
ment. Porous silicon also has unique biodegradable 
property compared with single-crystal silicon, prop-
erty that makes it useful for a number of in vitro and in 
vivo applications. For instance, porous silicon films can 
induce hydroxyapatite growth and promote bone heal-

ing in vitro [127]. Silicon nitride and silicon carbide are 
deposited with CVD or PECVD techniques respectively 
[128]. The hydrophilic property and small thickness of 
silicon nitride made it a good option for the study of 
cell-cell interaction in vitro. Ma et al developed a silicon 
nitride membrane for the study of blood-brain barrier 
(BBB) model [129]. In this model, they co-cultured en-
dothelial cells and astrocytes on different sides of an 
ultra-thin silicon nitride membrane. The close proxim-
ity of the two cell types promoted cell-cell interactions 
and led to formation of tight cell barrier.

3.3 Metals 

Metals are also frequently utilized in biodevices and mi-
crofluidic bioreactors, especially for devices with elec-
trodes and electric circuits [130]. Gold, platinum and 
titanium were commonly used metals for electrodes. 
Their biocompatibility made them safe for in vivo appli-
cations [131]. To enhance cell survival and tissue regen-
eration, Kim et al designed an implantable electrical 
bioreactor [132]. It provided electrical stimulation to 
the human mesenchymal stromal cells (hMSCs) seeded 
in the device. Cells stimulated with electrical currents 
showed increase in proliferation.

4 Conclusions

We presented an overview of cell culture models, 
which in conjunction with microfluidic setup can fur-
ther move the in vitro cell culture models towards rep-
licas of in vivo environment. As practical experience, 
the selection between static and perfusion models is 
driven by the application. For liver based models for 
example cell functions are similar in the first week for 
both static and perfusion models. The difference be-
comes relevant after 2 weeks culture. As a result, for ap-
plications that require up to one-week cell culture the 
static model is more suitable. Otherwise for long-term 
cell culture the perfusion system is more relevant. The 
perfusion system is more complex and in most cases its 
use requires special skills. Meanwhile, the cost of the 
perfusion system cannot be neglected.

For the cell culture model the organization of cell in 
spheroids is a better mimic of in vivo environment. 
The spheroid model presents more cell-cell interac-
tion than cell-surface interaction (characteristic of 2D 
models). Organ-on-a chip models start to be more and 
more attractive for drug screening. 

The main requirements of the perfusion chip can be 
summarized as follows:
- conserved the cell count over the testing period,
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- good mass transfer allowing diffusion of O2 and 
nutrients from media to the cell culture model to 
remove the metabolites and by-products,

- low shear stress to the cells, 
- low risk of contamination (reduced number of 

microfluidic connections, tubes and fluidic ele-
ments), 

- maintenance of stable temperature and pH, 
- ease to handle, 
- low drug and metabolites absorption. 

Coupling the spheroids cell culture model with micro-
fluidic setup is for our point of view the future step for 
the long term drug screening platforms with main ap-
plication on chronic toxicity testing.
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