Analysis of effects of dangling-bond defects in doped a-Si:H layers in heterojunction silicon solar cells with different electron affinities of ITO contacts

Jošt Balent, Franc Smole, Marko Topič, Janez Krč


The effects of dangling-bond defects in doped hydrogenated amorphous-silicon layers (p-a-Si:H and n-a-Si:H) in heterojunction silicon (SHJ) solar cells are studied in relation to applied Indium-Tin-Oxide (ITO) contacts with different electron affinities. A state-of-the-art numerical model of the SHJ solar cell was employed, including ITO contacts as full, volumetric semiconductor layers, applying the trap-assisted, band-to-band and direct tunnelling mechanisms at heterointerfaces in the device. The levels of dangling bond defect concentrations were varied in both p-a-Si:H and n-a-Si:H layers and ITOs with two different electron affinities were considered at both sides of the device. We show that the effects of the defects on the short-circuit current density, open-circuit voltage, fill factor and conversion efficiency of the device become more pronounced if ITOs with non-optimal electron affinities are used. Possibility to reach higher doping levels of the doped a-Si:H layers would mitigate the effects of its dangling bond states, which becomes more important if ITO electron affinity is not optimized to the doped a-Si:H layers. We demonstrate that the reduced efficiency due to the increase in dangling-bond density originates from the decrease of the fill-factor and open-circuit voltage, whereas the short-circuit current density has a small effect on efficiency for the chosen variation span. The reduction of the fill-factor is further explained by a drop in maximum-power-point voltage, which is more pronounced if optimization of ITO electron affinity is not taken into account.


Silicon heterojunction solar cell; Opto-electrical simulation; Defect-states; Electron affinities

Full Text:



F. ISE, ‘Photovoltaics Report’, 2020. [Online]. Available:

M. A. Green, E. D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, ‘Solar cell effi-ciency tables (version 56)’, Progress in Photovolta-ics: Research and Applications, vol. 28, no. 7, pp. 629–638, 2020, doi: 10.1002/pip.3303.

K. Yoshikawa et al., ‘Silicon heterojunction solar cell with interdigitated back contacts for a pho-toconversion efficiency over 26%’, Nature Ener-gy, vol. 2, p. 17032, Mar. 2017.

A. Richter, M. Hermle, and S. W. Glunz, ‘Reas-sessment of the Limiting Efficiency for Crystal-line Silicon Solar Cells’, IEEE Journal of Photovol-taics, vol. 3, no. 4, pp. 1184–1191, Oct. 2013, doi: 10.1109/JPHOTOV.2013.2270351.

H. Bashiri, M. A. Karami, and S. M. Nejad, ‘Het-erojunction silicon solar cells performance opti-mization and sensitivity reduction to the inter-face defect states’, Mater. Res. Express, vol. 4, no. 12, p. 126308, Dec. 2017, doi: 10.1088/2053-1591/aa9c91.

M. Filipič, Z. C. Holman, F. Smole, S. D. Wolf, C. Ballif, and M. Topič, ‘Analysis of lateral transport through the inversion layer in amorphous sili-con/crystalline silicon heterojunction solar cells’, J Appl Phys, vol. 114, no. 7, p. 074504, Aug. 2013, doi: 10.1063/1.4818709.

A. Kanevce and W. K. Metzger, ‘The role of amorphous silicon and tunneling in heterojunc-tion with intrinsic thin layer (HIT) solar cells’, Journal of Applied Physics, vol. 105, no. 9, pp. 094507–1, May 2009, doi: 10.1063/1.3106642.

C. Messmer, M. Bivour, C. Luderer, L. Tutsch, J. Schon, and M. Hermle, ‘Influence of Interfacial Oxides at TCO/Doped Si Thin Film Contacts on the Charge Carrier Transport of Passivating Con-tacts’, IEEE J. Photovoltaics, vol. 10, no. 2, pp. 343–350, Mar. 2020, doi: 10.1109/JPHOTOV.2019.2957672.

P. Procel, G. Yang, O. Isabella, and M. Zeman, ‘Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells’, Solar Energy Mate-rials and Solar Cells, vol. 186, pp. 66–77, Nov. 2018, doi: 10.1016/j.solmat.2018.06.021.

P. Procel et al., ‘Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell’, Progress in Photovoltaics: Research and Applica-tions, vol. 25, no. 6, pp. 452–469, Jun. 2017, doi: 10.1002/pip.2874.

P. Procel et al., ‘On the correlation between contact resistivity and high efficiency in (IBC-) SHJ solar cells’, 36th European Photovoltaic Solar Energy Conference and Exhibition, pp. 251–254, 2019.

Z. Shu, U. Das, J. Allen, R. Birkmire, and S. Hege-dus, ‘Experimental and simulated analysis of front versus all-back-contact silicon heterojunc-tion solar cells: effect of interface and doped a-Si:H layer defects’, Prog. Photovolt: Res. Appl., vol. 23, no. 1, pp. 78–93, Jan. 2015, doi: 10.1002/pip.2400.

R. Varache, J. P. Kleider, M. E. Gueunier-Farret, and L. Korte, ‘Silicon heterojunction solar cells: Optimization of emitter and contact properties from analytical calculation and numerical simula-tion’, Materials Science and Engineering: B, vol. 178, no. 9, pp. 593–598, May 2013, doi: 10.1016/j.mseb.2012.11.011.

M. Vukadinović, F. Smole, M. Topič, R. E. I. Schropp, and F. A. Rubinelli, ‘Transport in tunnel-ing recombination junctions: A combined com-puter simulation study’, Journal of Applied Phys-ics, vol. 96, no. 12, pp. 7289–7299, Dec. 2004, doi: 10.1063/1.1811375.

Synopsys, ‘SentaurusTM Device User Guide: Re-lease Q-2019.12’. 2019. [Online]. Available:

J. Balent, F. Smole, M. Topic, and J. Krc, ‘Numeri-cal Analysis of Selective ITO/a-Si:H Contacts in Heterojunction Silicon Solar Cells: Effect of De-fect States in Doped a-Si:H Layers on Perfor-mance Parameters’, IEEE J. Photovoltaics, pp. 1–14, 2021, doi: 10.1109/JPHOTOV.2021.3063019.

M. Bivour, S. Schröer, and M. Hermle, ‘Numerical Analysis of Electrical TCO / a-Si:H(p) Contact Properties for Silicon Heterojunction Solar Cells’, Energy Procedia, vol. 38, pp. 658–669, Dec. 2013, doi: 10.1016/j.egypro.2013.07.330.

S. Kirner et al., ‘The Influence of ITO Dopant Density on J-V Characteristics of Silicon Hetero-junction Solar Cells: Experiments and Simula-tions’, Energy Procedia, vol. 77, pp. 725–732, Aug. 2015, doi: 10.1016/j.egypro.2015.07.103.

M. Mikolášek, ‘Silicon Heterojunction Solar Cells: The Key Role of Heterointerfaces and their Im-pact on the Performance’, in Nanostructured So-lar Cells, N. Das, Ed. InTech, 2017. doi: 10.5772/65020.

L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, ‘Role of the work function of transparent conductive oxide on the performance of amor-phous/crystalline silicon heterojunction solar cells studied by computer simulation’, phys. stat. sol. (a), vol. 205, no. 5, pp. 1215–1221, May 2008, doi: 10.1002/pssa.200723276.

J. Bullock et al., ‘Efficient silicon solar cells with dopant-free asymmetric heterocontacts’, Nature Energy, vol. 1, no. 3, p. 15031, Jan. 2016, doi: 10.1038/nenergy.2015.31.

R. Islam, P. Ramesh, Ju Hyung Nam, and K. C. Saraswat, ‘Nickel oxide carrier selective contacts for silicon solar cells’, Jun. 2015, pp. 1–4. doi: 10.1109/PVSC.2015.7355921.

M. Mews, A. Lemaire, and L. Korte, ‘Sputtered Tungsten Oxide as Hole Contact for Silicon Het-erojunction Solar Cells’, IEEE Journal of Photovol-taics, vol. 7, no. 5, pp. 1209–1215, Sep. 2017, doi: 10.1109/JPHOTOV.2017.2714193.

D. Sacchetto et al., ‘ITO/MoOx/a-Si:H(i) Hole-Selective Contacts for Silicon Heterojunction So-lar Cells: Degradation Mechanisms and Cell Inte-gration’, IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1584–1590, Nov. 2017, doi: 10.1109/JPHOTOV.2017.2756066.

Y. Wan et al., ‘Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells’, ACS Applied Materials & Interfaces, vol. 8, no. 23, pp. 14671–14677, Jun. 2016, doi: 10.1021/acsami.6b03599.

W. Yoon et al., ‘Hole-selective molybdenum oxide as a full-area rear contact to crystalline p-type Si solar cells’, Japanese Journal of Applied Physics, vol. 56, no. 8S2, p. 08MB18, Aug. 2017, doi: 10.7567/JJAP.56.08MB18.

J. Krč, S. Franc, and T. Marko, ‘One-dimensional semi-coherent optical model for thin film solar cells with rough interfaces’, in Informacije MIDEM 32, Ljubljana, 2002, vol. 2002.

Z. Lokar et al., ‘Coupled modelling approach for optimization of bifacial silicon heterojunction so-lar cells with multi-scale interface textures’, Op-tics Express, vol. 27, no. 20, p. A1554, Sep. 2019, doi: 10.1364/OE.27.0A1554.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, ‘Improved quantitative descrip-tion of Auger recombination in crystalline sili-con’, Phys. Rev. B, vol. 86, no. 16, p. 165202, Oct. 2012, doi: 10.1103/PhysRevB.86.165202.

S. Olibet, E. Vallat, and C. Ballif, ‘Model for a-Si:H/C-Si interface recombination based on the amphoteric nature of silicon dangling bonds’, Physical Review B, vol. 76, Jul. 2007, doi: 10.1103/PhysRevB.76.035326.

D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation. Vienna: Springer Vienna, 1994. doi: 10.1007/978-3-7091-6644-4.

K. Horio and H. Yanai, ‘Numerical modeling of heterojunctions including the thermionic emis-sion mechanism at the heterojunction interface’, IEEE Trans. Electron Devices, vol. 37, no. 4, pp. 1093–1098, Apr. 1990, doi: 10.1109/16.52447.

F. Jiménez-Molinos, F. Gámiz, A. Palma, P. Cartujo, and J. A. López-Villanueva, ‘Direct and trap-assisted elastic tunneling through ultrathin gate oxides’, Journal of Applied Physics, vol. 91, no. 8, pp. 5116–5124, Apr. 2002, doi: 10.1063/1.1461062.

A. Palma, A. Godoy, J. A. Jiménez-Tejada, J. E. Carceller, and J. A. López-Villanueva, ‘Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide–semiconductor structures’, Phys. Rev. B, vol. 56, no. 15, pp. 9565–9574, Oct. 1997, doi: 10.1103/PhysRevB.56.9565.

M. Baudrit and C. Algora, ‘Tunnel Diode Model-ing, Including Nonlocal Trap-Assisted Tunneling: A Focus on III–V Multijunction Solar Cell Simula-tion’, IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2564–2571, Oct. 2010, doi: 10.1109/TED.2010.2061771.

MeiKei Ieong, P. M. Solomon, S. E. Laux, H.-S. P. Wong, and D. Chidambarrao, ‘Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model’, in International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), San Francisco, CA, USA, 1998, pp. 733–736. doi: 10.1109/IEDM.1998.746461.

E. O. Kane, ‘Theory of Tunneling’, Journal of Ap-plied Physics, vol. 32, no. 1, pp. 83–91, Jan. 1961, doi: 10.1063/1.1735965.

A. Klein et al., ‘Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment’, Ma-terials, vol. 3, no. 11, pp. 4892–4914, Nov. 2010, doi: 10.3390/ma3114892.



  • There are currently no refbacks.

Copyright (c) 2022 Jošt Balent, Franc Smole, Marko Topič, Janez Krč

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.