Charge Configuration Memory (CCM) device – a novel approach to memory

Anže Mraz, Igor Vaskivskyi, Rok Venturini, Damjan Svetin, Yelyzaveta Chernolevska, Dragan Mihailovic


Computer technologies have advanced unimaginably over the last 70 years, mainly due to scaling of electrical components down to the nanometre regime and their consequential increase in density, speed and performance. Decrease in dimensions also brings about many unwanted side effects, such as increased leakage, heat dissipation and increased cost of production [1], [2]. However, it seems that one of the biggest factors limiting further progress in high-performance computing is the increasing difference in performance between processors and memory units, a so called processor-memory gap [3]. To increase the efficiency of memory devices, emerging alternative non-volatile memory (NVM) technologies could be introduced, promising high operational speed, low power consumption and high density [4]. This review focuses on a conceptually unique non-volatile Charge Configuration Memory (CCM) device, which is based on resistive switching between different electronic states in a 1T-TaS2 crystal [5]. CCM demonstrates ultrafast switching speed <16 ps, very low switching energy (2.2 fJ/bit), very good endurance [6] and a straightforward design. It operates at cryogenic temperatures, which makes it ideal for integration into emerging cryo-computing [7] and other high-performance computing systems such as superconducting quantum computers.


Charge Configuration Memory (CCM), 1T-TaS2, Ultrafast devices, Charge density wave (CDW)

Full Text:



N. Z. Haron and S. Hamdioui, ‘Why is CMOS scaling coming to an END?’, in 2008 3rd International Design and Test Workshop, Monastir, Tunisia, Dec. 2008, pp. 98–103, doi: 10.1109/IDT.2008.4802475.

H. Radamson et al., ‘The Challenges of Advanced CMOS Process from 2D to 3D’, Applied Sciences, vol. 7, no. 10, p. 1047, Oct. 2017, doi: 10.3390/app7101047.

D. Efnusheva, A. Cholakoska, and A. Tentov, ‘A Survey of Different Approaches for Overcoming the Processor - Memory Bottleneck’, IJCSIT, vol. 9, no. 2, pp. 151–163, Apr. 2017, doi: 10.5121/ijcsit.2017.9214.

N. Ul Mustafa, A. Armejach, O. Ozturk, A. Cristal, and O. S. Unsal, ‘Implications of non-volatile memory as primary storage for database management systems’, in 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), Agios Konstantinos, Jul. 2016, pp. 164–171, doi: 10.1109/SAMOS.2016.7818344.

L. Stojchevska et al., ‘Ultrafast Switching to a Stable Hidden Quantum State in an Electronic Crystal’, Science, vol. 344, no. 6180, Art. no. 6180, Apr. 2014, doi: 10.1126/science.1241591.

A. Mraz et al., ‘Energy efficient manipulation of topologically protected states in non-volatile ultrafast charge configuration memory devices’, arXiv:2103.04622.

S. Anders et al., ‘European roadmap on superconductive electronics – status and perspectives’, Physica C: Superconductivity, vol. 470, no. 23–24, pp. 2079–2126, Dec. 2010, doi: 10.1016/j.physc.2010.07.005.

D. Akinwande, ‘Graphene and two-dimensional materials for silicon technology’, p. 12.

M. A. Zidan, J. P. Strachan, and W. D. Lu, ‘The future of electronics based on memristive systems’, Nature Electronics, vol. 1, no. 1, Art. no. 1, Jan. 2018, doi: 10.1038/s41928-017-0006-8.

H. Choi, D. Hong, J. Lee, and S. Yoo, ‘Reducing DRAM refresh power consumption by runtime profiling of retention time and dual-row activation’, Microprocessors and Microsystems, vol. 72, p. 102942, Feb. 2020, doi: 10.1016/j.micpro.2019.102942.

T. Tripathi, D. Chauhan, and S. Singh, ‘A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability’, JLPEA, vol. 8, no. 4, p. 41, Oct. 2018, doi: 10.3390/jlpea8040041.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, ‘2D transition metal dichalcogenides’, Nat Rev Mater, vol. 2, no. 8, p. 17033, Aug. 2017, doi: 10.1038/natrevmats.2017.33.

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, ‘From Mott state to superconductivity in 1T-TaS2’, Nature Mater, vol. 7, no. 12, pp. 960–965, Dec. 2008, doi: 10.1038/nmat2318.

E. Tosatti and P. Fazekas, ‘ON THE NATURE OF THE LOW-TEMPERATURE PHASE OF 1T-TaS 2’, J. Phys. Colloques, vol. 37, no. C4, pp. C4-165-C4-168, Oct. 1976, doi: 10.1051/jphyscol:1976426.

K. Rossnagel, ‘On the origin of charge-density waves in select layered transition-metal dichalcogenides’, J. Phys.: Condens. Matter, vol. 23, no. 21, p. 213001, Jun. 2011, doi: 10.1088/0953-8984/23/21/213001.

R. E. Thomson, B. Burk, A. Zettl, and J. Clarke, ‘Scanning tunneling microscopy of the charge-density-wave structure in 1 T - TaS 2’, Phys. Rev. B, vol. 49, no. 24, pp. 16899–16916, Jun. 1994, doi: 10.1103/PhysRevB.49.16899.

B. Burk, R. E. Thomson, J. Clarke, and A. Zettl, ‘Surface and Bulk Charge Density Wave Structure in 1 T-TaS2’, Science, vol. 257, no. 5068, pp. 362–364, Jul. 1992, doi: 10.1126/science.257.5068.362.

I. Vaskivskyi et al., ‘Fast electronic resistance switching involving hidden charge density wave states’, Nat Commun, vol. 7, no. 1, p. 11442, Sep. 2016, doi: 10.1038/ncomms11442.

Y. A. Gerasimenko, P. Karpov, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, ‘Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide’, npj Quantum Mater., vol. 4, no. 1, p. 32, Dec. 2019, doi: 10.1038/s41535-019-0172-1.

D. Cho et al., ‘Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2’, Nat Commun, vol. 7, no. 1, p. 10453, Apr. 2016, doi: 10.1038/ncomms10453.

M. W. Shihong, T. Prodromakis, I. Salaoru, and C. Toumazou, ‘Modelling of Current Percolation Channels in Emerging Resistive Switching Elements’, p. 5.

J. Ravnik, I. Vaskivskyi, T. Mertelj, and D. Mihailovic, ‘Real-time observation of the coherent transition to a metastable emergent state in 1 T − Ta S 2’, Phys. Rev. B, vol. 97, no. 7, Art. no. 7, Feb. 2018, doi: 10.1103/PhysRevB.97.075304.

I. Vaskivskyi et al., ‘Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS 2’, Science Advances, vol. 1, no. 6, Art. no. 6, Jul. 2015, doi: 10.1126/sciadv.1500168.

P. Monceau, ‘Electronic crystals: an experimental overview’, Advances in Physics, vol. 61, no. 4, pp. 325–581, Aug. 2012, doi: 10.1080/00018732.2012.719674.

J. Bardeen, ‘Classical versus quantum models of charge-density-wave depinning in quasi-one-dimensional metals’, Phys. Rev. B, vol. 39, no. 6, pp. 3528–3532, Feb. 1989, doi: 10.1103/PhysRevB.39.3528.

D. Loke et al., ‘Breaking the Speed Limits of Phase-Change Memory’, Science, vol. 336, no. 6088, Art. no. 6088, Jun. 2012, doi: 10.1126/science.1221561.

D. Svetin, I. Vaskivskyi, S. Brazovskii, and D. Mihailovic, ‘Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2’, Scientific Reports, vol. 7, no. 1, Art. no. 1, Dec. 2017, doi: 10.1038/srep46048.

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, ‘Memristive phase switching in two-dimensional 1T-TaS 2 crystals’, Sci. Adv., vol. 1, no. 9, Art. no. 9, Oct. 2015, doi: 10.1126/sciadv.1500606.

A. W. Tsen et al., ‘Structure and control of charge density waves in two-dimensional 1T-TaS 2’, Proc Natl Acad Sci USA, vol. 112, no. 49, pp. 15054–15059, Dec. 2015, doi: 10.1073/pnas.1512092112.

P. Khalili Amiri et al., ‘Electric-Field-Controlled Magnetoelectric RAM: Progress, Challenges, and Scaling’, IEEE Transactions on Magnetics, vol. 51, no. 11, Art. no. 11, Nov. 2015, doi: 10.1109/TMAG.2015.2443124.

J. M. Iwata-Harms et al., ‘Ultrathin perpendicular magnetic anisotropy CoFeB free layers for highly efficient, high speed writing in spin-transfer-torque magnetic random access memory’, Sci Rep, vol. 9, no. 1, p. 19407, Dec. 2019, doi: 10.1038/s41598-019-54466-7.

O. A. Mukhanov, ‘Energy-Efficient Single Flux Quantum Technology’, IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 760–769, Jun. 2011, doi: 10.1109/TASC.2010.2096792.

D. S. Holmes, A. L. Ripple, and M. A. Manheimer, ‘Energy-Efficient Superconducting Computing—Power Budgets and Requirements’, IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1701610–1701610, Jun. 2013, doi: 10.1109/TASC.2013.2244634.

A. N. McCaughan and K. K. Berggren, ‘A Superconducting-Nanowire Three-Terminal Electrothermal Device’, Nano Letters, vol. 14, no. 10, Art. no. 10, Oct. 2014, doi: 10.1021/nl502629x.

Q.-Y. Zhao, A. N. McCaughan, A. E. Dane, K. K. Berggren, and T. Ortlepp, ‘A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics’, Superconductor Science and Technology, vol. 30, no. 4, Art. no. 4, Apr. 2017, doi: 10.1088/1361-6668/aa5f33.

P. Schmidt, M. Binnewies, R. Glaum, and M. Schmidt, ‘Chemical Vapor Transport Reactions–Methods, Materials, Modeling’, in Advanced Topics on Crystal Growth, S. Ferreira, Ed. InTech, 2013, doi: 10.5772/55547 .

S. Tardif, ‘Nanocolonnes de GeMn : propriétés magnétiques et structurales à la lumière du synchrotron’,



  • There are currently no refbacks.

Copyright (c) 2015 Anže Mraz, Igor Vaskivskyi, Rok Venturini, Damjan Svetin, Yelyzaveta Chernolevska, Dragan Mihailovic

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.