Examination of Resistive Switching Energy of Some Nonlinear Dopant Drift Memristor Models



In the literature, there are memristor models based on nonlinear drift mechanisms and window functions. Memristors can be employed to model resistive memories. When the resistance of a memristor undergoes a transition from its lowest value to its highest value, or vice versa, this phenomenon is referred to as resistive or memristive switching. The energy required for this transition holds particular importance, especially in the context of resistive computer memory and digital logic applications. Experimental measurements can be used to determine the resistive switching energy, and it should also be possible to calculate it theoretically based on the parameters of the memristor model utilized. Recently, the resistive switching times of some of the nonlinear dopant drift memristor models have been examined analytically considering especially their memory and digital circuit applications. In the literature, to the best of our knowledge, the resistive switching energy of the nonlinear dopant drift memristor models has not been calculated and examined in detail. In this study, the memristive switching energy of some of the well-known memristor models using a window function is calculated and found to be infinite. This is not feasible according to the experiments in which a finite resistive switching energy is consumed. The criterion that a memristor must have a finite resistive energy is also presented in this study. The results and the criterion for the resistive switching energy presented in this manuscript can be utilized to build more realistic memristor models in the future.


Memristor; memristor models; resistive memories; window function; memristive switching; resistive switching

Full Text:



L. Chua, "Memristor-The missing circuit element," IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971, doi: 10.1109/TCT.1971.1083337.

L. O. Chua and K. Sung Mo, "Memristive devices and systems," Proceedings of the IEEE, vol. 64, no. 2, pp. 209-223, 1976, doi: 10.1109/PROC.1976.10092.

D. Strukov, G. Snider, D. Stewart, and S. Williams, "The Missing Memristor Found," Nature, vol. 453, pp. 80-3, 06/01 2008, doi: 10.1038/nature06932.

T. Prodromakis and C. Toumazou, A review on memristive devices and applications. 2011, pp. 934-937.

Y. Pershin and M. Di Ventra, "Memory effects in complex materials and nanoscale systems," Advances in Physics - ADVAN PHYS, vol. 60, 11/12 2010, doi: 10.1080/00018732.2010.544961.

L. Chua, "Resistance Switching Memories Are Memristors," Applied Physics A, vol. 102, pp. 765-783, 03/01 2011, doi: 10.1007/s00339-011-6264-9.

J. Domaradzki, D. Wojcieszak, T. Kotwica, and E. Mankowska, "Memristors: a Short Review on Fundamentals, Structures, Materials and Applications," International Journal of Electronics and Telecommunications, 2020.

S. G. Hu et al., "Review of Nanostructured Resistive Switching Memristor and Its Applications," Nanoscience and Nanotechnology Letters, vol. 6, pp. 729-757, 09/01 2014, doi: 10.1166/nnl.2014.1888.

S. Shin, K. Kim, and S.-M. Kang, "Memristor applications for programmable analog ICs. IEEE Trans. Nano. 10(2), 266-274," Nanotechnology, IEEE Transactions on, vol. 10, pp. 266-274, 04/01 2011, doi: 10.1109/TNANO.2009.2038610.

T. A. Wey and W. D. Jemison, "Variable gain amplifier circuit using titanium dioxide memristors," Circuits, Devices & Systems, IET, vol. 5, pp. 59-65, 02/01 2011, doi: 10.1049/iet-cds.2010.0210.

Y. Pershin and M. Di Ventra, "Practical Approach to Programmable Analog Circuits With Memristors," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57, pp. 1857-1864, 09/01 2010, doi: 10.1109/TCSI.2009.2038539.

S. Yener, R. Mutlu, and H. Kuntman, A new memristor-based high-pass filter/amplifier: Its analytical and dynamical models. 2014, pp. 1-4.

A. Thomas, "Memristor-based neural networks," Journal of Physics D: Applied Physics, vol. 46, p. 093001, 02/05 2013, doi: 10.1088/0022-3727/46/9/093001.

Y. Joglekar and S. Wolf, "Joglekar YN, Wolf SJ (2009, July)The elusive memristor: properties of basic electrical circuits. Eur J Phys," European Journal of Physics, vol. 30, 07/25 2008, doi: 10.1088/0143-0807/30/4/001.

Z. Biolek, D. Biolek, and B. V, "SPICE Model of Memristor with Nonlinear Dopant Drift," Radioengineering, vol. 18, 06/01 2009.

T. Prodromakis, B. Peh, C. Papavassiliou, and C. Toumazou, "A Versatile Memristor Model With Nonlinear Dopant Kinetics," IEEE Transactions on Electron Devices - IEEE TRANS ELECTRON DEVICES, vol. 58, pp. 3099-3105, 09/01 2011, doi: 10.1109/TED.2011.2158004.

J. Zha, H. Huang, and Y. Liu, "A Novel Window Function for Memristor Model With Application in Programming Analog Circuits," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, pp. 1-1, 01/01 2015, doi: 10.1109/TCSII.2015.2505959.

T. D. K. Resat MUTLU, "A Zeno Paradox: Some Well-known Nonlinear Dopant Drift Memristor Models Have Infinite Resistive Switching Time," RADIOENGINEERING, Resarch Article vol. 32, no. 3, p. 13, 2023 2023, doi: DOI: 10.13164/re.2023.0312.

E. Gale, "TiO2-based memristors and ReRAM: Materials, mechanisms and models (a review)," Semiconductor Science and Technology, vol. 29, p. 104004, 09/18 2014, doi: 10.1088/0268-1242/29/10/104004.

V. Baghel and S. Akashe, Low Power Memristor Based 7T SRAM Using MTCMOS Technique. 2015, pp. 222-226.

J. Mohr, T. Hennen, D. Bedau, J. Nag, R. Waser, and D. Wouters, Fabrication of highly resistive NiO thin films for nanoelectronic applications. 2022.

J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. Tour, "Resistive Switches and Memories from Silicon Oxide," Nano letters, vol. 10, pp. 4105-10, 10/13 2010, doi: 10.1021/nl102255r.

D.-H. Kwon et al., "Atomic structure of conducting nanofilaments in TiO," Nature nanotechnology, vol. 5, pp. 148-53, 02/01 2010, doi: 10.1038/nnano.2009.456.

J. J. Yang, M. Pickett, X. Li, D. Ohlberg, D. Stewart, and S. Williams, "Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices," Nature nanotechnology, vol. 3, pp. 429-33, 07/01 2008, doi: 10.1038/nnano.2008.160.

H. Akinaga and H. Shima, "Resistive Random Access Memory (ReRAM) Based on Metal Oxides," Proceedings of the IEEE, vol. 98, pp. 2237-2251, 01/01 2011, doi: 10.1109/JPROC.2010.2070830.

R. Waser and M. Aono, "Nanoionics-based resistive switching memories," 2009, pp. 158-165.

B. J. Choi et al., "Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-Layer Deposition," Journal of Applied Physics, vol. 98, 08/15 2005, doi: 10.1063/1.2001146.

H. Xie et al., "Resistive Switching Properties of HfO2-based ReRAM with Implanted Si/Al Ions," AIP Conference Proceedings, vol. 1496, pp. 26-29, 11/01 2012, doi: 10.1063/1.4766481.

A. Sivkov, Y. Xing, Z. Minden, Z. Xiao, K. Y. Cheong, and F. Zhao, "Resistive Switching Properties of ZrO2 Film by Plasma-Enhanced Atomic Layer Deposition for Non-volatile Memory Applications," Journal of Electronic Materials, vol. 50, pp. 1-6, 06/01 2021, doi: 10.1007/s11664-021-09065-6.

E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature materials, vol. 9, pp. 403-6, 05/01 2010, doi: 10.1038/nmat2748.

R. Rosezin, E. Linn, L. Nielen, C. Kügeler, R. Bruchhaus, and R. Waser, "Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays," IEEE Electron Device Letters, vol. 32, no. 2, pp. 191-193, 2011, doi: 10.1109/LED.2010.2090127.

e. Karakulak, R. Mutlu, and E. Uc¸ar, "Sneak path current equivalent circuits and reading margin analysis of complementary resistive switches based 3D stacking crossbar memories," Informacije MIDEM, vol. 44, pp. 235-241, 01/01 2014.

e. Karakulak, R. Mutlu, and E. UÇAr, "Reconstructive sensing circuit for complementary resistive switches-based crossbar memories," TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, vol. 24, pp. 1371-1383, 01/01 2016, doi: 10.3906/elk-1309-71.

L. Gao, F. Alibart, and D. B. Strukov, "Programmable CMOS/Memristor Threshold Logic," IEEE Transactions on Nanotechnology, vol. 12, no. 2, pp. 115-119, 2013, doi: 10.1109/TNANO.2013.2241075.

C. M. Jung, K. H. Jo, E. S. Lee, H. M. Vo, and K. S. Min, "Zero-Sleep-Leakage Flip-Flop Circuit With Conditional-Storing Memristor Retention Latch," IEEE Transactions on Nanotechnology, vol. 11, no. 2, pp. 360-366, 2012, doi: 10.1109/TNANO.2011.2175943.

W. Robinett et al., "A memristor-based nonvolatile latch circuit," Nanotechnology, vol. 21, p. 235203, 06/11 2010, doi: 10.1088/0957-4484/21/23/235203.

A. Vishwakarma, K. Ampadu, M. Huebner, S. Vishvakarma, and M. Reichenbach, "Memristor-Based CMOS Hybrid Circuit Design and Analysis," vol. 218, pp. 563-573, 01/01 2023, doi: 10.1016/j.procs.2023.01.038.

A. Edwards, H. Barnaby, K. Campbell, M. Kozicki, W. Lu, and M. Marinella, "Reconfigurable Memristive Device Technologies," Proceedings of the IEEE, vol. 103, pp. 1004-1033, 07/01 2015, doi: 10.1109/JPROC.2015.2441752.

K.-H. Jo, C.-M. Jung, K.-S. Min, and S.-M. Kang, "Self-Adaptive Write Circuit for Low-Power and Variation-Tolerant Memristors," Nanotechnology, IEEE Transactions on, vol. 9, pp. 675-678, 12/01 2010, doi: 10.1109/TNANO.2010.2052108.

I. Vourkas and G. Sirakoulis, "Emerging Memristor-Based Logic Circuit Design Approaches: A Review," IEEE Circuits and Systems Magazine, vol. 16, pp. 15-30, 08/19 2016, doi: 10.1109/MCAS.2016.2583673.

F. Wang, N. Helian, S. Wu, M. G. Lim, Y. Guo, and M. Parker, "Delayed Switching in Memristors and Memristive Systems," Electron Device Letters, IEEE, vol. 31, pp. 755-757, 08/01 2010, doi: 10.1109/LED.2010.2049560.

Y. Xie, "Modeling, Architecture, and Applications for Emerging Memory Technologies," Design & Test of Computers, IEEE, vol. 28, pp. 44-51, 03/01 2011, doi: 10.1109/MDT.2011.20.

F. Z. Wang et al., "Delayed switching applied to memristor neural networks," Journal of Applied Physics, vol. 111, no. 7, p. 07E317, 2012, doi: 10.1063/1.3672409.

A. Özgüvenç, R. Mutlu, and e. Karakulak, Sawtooth signal generator with a memristor. 2016.

S. Yener, R. Mutlu, T. Yener, and H. Kuntman, Memristor-based timing circuit. 2017, pp. 1-3.

R. Mutlu and e. Karakulak, "A methodology for memristance calculation," TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, vol. 22, pp. 121-131, 01/01 2014, doi: 10.3906/elk-1205-16.

K. M. Kim et al., "Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application," Nano Letters, vol. 16, 09/23 2016, doi: 10.1021/acs.nanolett.6b01781.

D. Niu, Y. Chen, and Y. Xie, Low-power dual-element memristor based memory design. 2010, pp. 25-30.

X. Guo, E. Ipek, and T. Soyata, Resistive computation: avoiding the power wall with low-leakage, STT-MRAM based computing. 2010, pp. 371-382.

R. Mutlu et al., "AC Power Formula for Unsaturated TiO 2 Memristors with Linear Dopant Drift, Small Signal AC Power Formula for All Memristors, and Some Applications for These Formulas," 01/08 2019.

M. E. Fouda and A. Radwan, "Power Dissipation of Memristor-Based Relaxation Oscillators," Radioengineering, vol. 24, pp. 968-973, 12/01 2015, doi: 10.13164/re.2015.0968.

S. Gazabare, R. Pieper, W. Wondmagegn, and N. Satyala, Observations on model based predictions for memristor power dissipation. 2011.

Y. Ho, G. Huang, and P. Li, "Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 58, pp. 724-736, 05/01 2011, doi: 10.1109/TCSI.2010.2078710.

S. Vongehr, "The Missing Memristor has Not been Found," Scientific Reports, vol. 5, p. 11657, 06/25 2015, doi: 10.1038/srep11657.

K. Soni and S. Sahoo, A Review On Different Memristor Modeling And Applications. 2022, pp. 688-695.

"Zeno's paradoxes," ed. WikipediaThe Free Encyclopedia, 2023, p. https://en.wikipedia.org/wiki/Zeno%27s_paradoxes.

S. Adhikari, M. Sah, H. Kim, and L. Chua, "Three Fingerprints of Memristor," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, pp. 3008-3021, 11/01 2013, doi: 10.1109/TCSI.2013.2256171.

J. Mustafa and R. Waser, "A Novel Reference Scheme for Reading Passive Resistive Crossbar Memories," Nanotechnology, IEEE Transactions on, vol. 5, pp. 687-691, 12/01 2006, doi: 10.1109/TNANO.2006.885016.


  • There are currently no refbacks.

Copyright (c) 2024 Rabia KORKMAZ TAN, Oya MERT, Reşat MUTLU

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.