Linear Thermal Expansion of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Bulk Ceramic

Sabi William Konsago, Andrej Debevec, Jena Cilenšek, Brigita Kmet, Barbara Malič

Abstract


We report the linear thermal expansion coefficient of lead-free ferroelectric ceramic barium zirconate titanate - barium calcium titanate 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT). The material was prepared by solid-state synthesis and consolidated by sintering at 1450 °C. BZT-BCT crystallizes in the perovskite phase. The microstructure of the ceramic with about 95 % relative density consists of about 10 mm-sized grains. The contact dilatometry of the ceramic specimen reveals the change of slope of the linear thermal expansion curve at 84 °C. This is in good agreement with the peak of the dielectric permittivity versus temperature at about 85 °C  indicating the transition from the low-temperature polar ferroelectric phase to a high-temperature nonpolar phase or Curie temperature. The thermal expansion coefficients of the polar tetragonal and nonpolar cubic phases of BZT-BCT are 7.69×10-6 K-1 (40°C – 80°C) and 12.39×10-6 K-1 (100°C – 600°C), respectively. The thermal expansion data are among the material data needed in the design of thin- and thick-film structures for energy-harvesting and energy-storage applications.

Keywords


0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT); Lead-free; ferroelectric ceramic; linear thermal expansion

Full Text:

PDF

References


W. Liu and X. Ren, “Large piezoelectric effect in Pb-free ceramics,” Phys Rev Lett, vol. 103, no. 25, Dec. 2009, doi: 10.1103/PhysRevLett.103.257602.

M. Acosta, N. Novak, W. Jo, and J. Rödel, “Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x (Ba0.7Ca0.3)TiO3 lead-free piezoceramic,” Acta Mater, vol. 80, pp. 48–55, 2014, doi: 10.1016/j.actamat.2014.07.058.

J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, “Transferring lead-free piezoelectric ceramics into application,” J Eur Ceram Soc, vol. 35, no. 6, pp. 1659–1681, Jun. 2015, doi: 10.1016/j.jeurceramsoc.2014.12.013.

X. Yan et al., “Correspondence: Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 60, no. 6, pp. 1272–1276, 2013, doi: 10.1109/TUFFC.2013.2692.

K. K. Poon, M. C. Wurm, D. M. Evans, M. Einarsrud, R. Lutz, and J. Glaum, “Biocompatibility of (Ba,Ca)(Zr,Ti)O 3 piezoelectric ceramics for bone replacement materials,” J Biomed Mater Res B Appl Biomater, vol. 108, no. 4, pp. 1295–1303, May 2020, doi: 10.1002/jbm.b.34477.

C. S. Manohar et al., “Novel Lead-free biocompatible piezoelectric Hydroxyapatite (HA) – BCZT (Ba0.85Ca0.15Zr0.1Ti0.9O3) nanocrystal composites for bone regeneration,” Nanotechnol Rev, vol. 8, no. 1, pp. 61–78, May 2019, doi: 10.1515/ntrev-2019-0006.

“DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.”

“JIS-C-0950: 2005 (E), ‘The marking for presence of the specific chemical substances for electrical and electronic equipment’, Japanese Standards Association, 2005”.

L. M. Benson and K. K. Reczek, “A guide to United States electrical and electronic equipment compliance requirements,” Jun. 2021. doi: 10.6028/NIST.IR.8118r2.

V. S. Puli et al., “Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications,” J Mater Sci, vol. 48, no. 5, pp. 2151–2157, Mar. 2013, doi: 10.1007/s10853-012-6990-1.

Neha, R. Pandey, M. Bhatnagar, P. Kumar, R. K. Malik, and C. Prakash, “Improved dielectric and energy storage properties in (1-x)BaTi0.80Zr0.20O3-xBa0.70Ca0.30Ti0.99Fe0.01O3 ceramics near morphotropic phase boundary,” Mater Lett, vol. 318, p. 132126, Jul. 2022, doi: 10.1016/j.matlet.2022.132126.

M. Acosta, N. Novak, G. A. Rossetti, and J. Rödel, “Mechanisms of electromechanical response in (1 - X)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics,” Appl Phys Lett, vol. 107, no. 14, Oct. 2015, doi: 10.1063/1.4932654.

D. S. Keeble, F. Benabdallah, P. A. Thomas, M. Maglione, and J. Kreisel, “Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3),” Appl Phys Lett, vol. 102, no. 9, Mar. 2013, doi: 10.1063/1.4793400.

J. Hao, W. Bai, W. Li, and J. Zhai, “Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics,” Journal of the American Ceramic Society, vol. 95, no. 6, pp. 1998–2006, Jun. 2012, doi: 10.1111/j.1551-2916.2012.05146.x.

L. Song, S. Glinsek, S. Drnovsek, V. Kovacova, B. Malic, and E. Defay, “Piezoelectric thick film for power-efficient haptic actuator,” Appl Phys Lett, vol. 121, no. 21, Nov. 2022, doi: 10.1063/5.0106174.

P. Muralt, “Polar oxide thin films for MEMS applications,” in Chemical Solution Deposition of Functional Oxide Thin Films, vol. 9783211993118, 2013. doi: 10.1007/978-3-211-99311-8_24.

T. A. Berfield, R. J. Ong, D. A. Payne, and N. R. Sottos, “Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films,” J Appl Phys, vol. 101, no. 2, Jan. 2007, doi: 10.1063/1.2422778.

L. Lian and N. R. Sottos, “Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films,” J Appl Phys, vol. 87, no. 8, pp. 3941–3949, Apr. 2000, doi: 10.1063/1.372439.

K. Coleman, J. Walker, T. Beechem, and S. Trolier-McKinstry, “Effect of stresses on the dielectric and piezoelectric properties of Pb(Zr0.52Ti0.48)O3 thin films,” J Appl Phys, vol. 126, no. 3, Jul. 2019, doi: 10.1063/1.5095765.

R. K. BORDIA and R. RAJ, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” Journal of the American Ceramic Society, vol. 68, no. 6, pp. 287–292, Jun. 1985, doi: 10.1111/j.1151-2916.1985.tb15227.x.

A. M. Pashaev, A. Kh. Dzhanakhmedov, and A. A. Aliyev, “Effect of Tensile Stresses on the Breakdown Voltage of Thin Films,” Technical Physics, vol. 65, no. 1, pp. 54–56, Jan. 2020, doi: 10.1134/S1063784220010211.

Y.-N. Bie et al., “Effect of Source Field Plate Cracks on the Electrical Performance of AlGaN/GaN HEMT Devices,” Crystals (Basel), vol. 12, no. 9, p. 1195, Aug. 2022, doi: 10.3390/cryst12091195.

Y. Tian et al., “Diversiform electrical and thermal expansion properties of (1 − x)Ba0.95Ca0.05Ti0.94Zr0.06O3–(x)Dy lead-free piezoelectric ceramics influenced by defect complexes,” J Mater Sci, vol. 53, no. 16, pp. 11228–11241, Aug. 2018, doi: 10.1007/s10853-018-2428-8.

Y. Tian et al., “Electrical Properties and Thermal Expansion Characteristics of (1– x )Ba 0.948 Ca0.05Er0.002Ti0.94Zr0.06O3 –( x )Pr Lead‐Free Piezoelectric Ceramics Sintered at a Low‐Temperature,” physica status solidi (a), vol. 216, no. 2, Jan. 2019, doi: 10.1002/pssa.201800622.

Y. Tian et al., “Temperature-dependent ferroelectric and piezoelectric response of Yb3+ and Tm3+ co-doped Ba0.95Ca0.05Ti0.90Zr0.10O3 lead-free ceramic,” Journal of Ceramic Processing Research, vol. 23, no. 4, pp. 430–435, Aug. 2022, doi: 10.36410/jcpr.2022.23.4.430.

Y. Tian et al., “Piezoelectricity and Thermophysical Properties of Ba0.90Ca0.10Ti0.96Zr0.04O3 Ceramics Modified with Amphoteric Nd3+ and Y3+ Dopants,” Materials, vol. 16, no. 6, p. 2369, Mar. 2023, doi: 10.3390/ma16062369.

F. Benabdallah et al., “Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering,” J Eur Ceram Soc, vol. 35, no. 15, pp. 4153–4161, Dec. 2015, doi: 10.1016/j.jeurceramsoc.2015.06.030.

H. Amorín et al., “Insights into the Early Size Effects of Lead‐Free Piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3,” Adv Electron Mater, Nov. 2023, doi: 10.1002/aelm.202300556.

S. López-Blanco, D. A. Ochoa, H. Amorín, A. Castro, M. Algueró, and J. E. García, “Fine-grained high-performance Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics obtained by current-controlled flash sintering of nanopowders,” J Eur Ceram Soc, vol. 43, no. 16, pp. 7440–7445, Dec. 2023, doi: 10.1016/j.jeurceramsoc.2023.08.012.

G. Shirane and A. Takeda, “Volume Change at Three Transitions in BaTiO3 Ceramics,” J Physical Soc Japan, vol. 6, no. 2, pp. 128–129, Mar. 1951, doi: 10.1143/JPSJ.6.128.

Y. Tian et al., “Diversiform electrical and thermal expansion properties of (1 − x)Ba0.95Ca0.05Ti0.94Zr0.06O3–(x)Dy lead-free piezoelectric ceramics influenced by defect complexes,” J Mater Sci, vol. 53, no. 16, pp. 11228–11241, Aug. 2018, doi: 10.1007/s10853-018-2428-8.

Y. Tian et al., “Temperature-dependent ferroelectric and piezoelectric response of Yb3+ and Tm3+ co-doped Ba0.95Ca0.05Ti0.90Zr0.10O3 lead-free ceramic,” Journal of Ceramic Processing Research, vol. 23, no. 4, pp. 430–435, Aug. 2022, doi: 10.36410/jcpr.2022.23.4.430.




DOI: https://doi.org/10.33180/InfMIDEM2023.403

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sabi William Konsago

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.