Multi-Beam Metasurface Control Based on Fre-quency Reconfigurable Antenna

Bashar Qas Elias, Marwa M. Ismail, Bashar S. Bashar, Ali Ihsan Alanssari, Z.A Rhazali, Halina Misran

Abstract


This paper presents a new design and analysis of a reconfigurable antenna with a switchable slot held using PIN diodes for multifunction reconfiguration, including frequency multiplexing. The performance of the proposed antenna in terms of reflection coefficient spectra and radiation patterns is evaluated. From the results obtained, it is observed that the antenna can be operated for different frequencies: 1.8 GHz, 2.7 GHz, 3.1 GHz, 3.3 GHz, 4.1 GHz, 5.1 GHz, and 5.4 GHz. A maximum gain of 11.1 dBi is also significantly achieved at 5.1 GHz. Moreover, this antenna is designed to provide a high Q-factor and low-frequency ratio (FR) for using the spectrum efficiently. Upon the advantage of spatial diversity, multiple independent data streams can be transmitted over the same frequency simultaneously. CST microwave studio is used to design and analyze the antenna at different switching scenarios.


Keywords


Reflection coefficient, gain, microstrip patch, modes, Metasurface

Full Text:

PDF

References


C. -X. Mao, S. Gao and Y. Wang, "Broadband High-Gain Beam-Scanning Antenna Array for Millimeter-Wave Applications," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4864-4868, Sept. 2017, doi: 10.1109/TAP.2017.2724640.

Z. Lodro, N. Shah, E. Mahar, S. B. Tirmizi and M. Lodro, "mmWave Novel Multiband Microstrip Patch Antenna Design for 5G Communication," 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, pp. 1-4, doi: 10.1109/ICOMET.2019.8673447.

J. Zhu, C. -H. Chu, L. Deng, C. Zhang, Y. Yang and S. Li, "mm-Wave High Gain Cavity-Backed Aperture-Coupled Patch Antenna Array," in IEEE Access, vol. 6, pp. 44050-44058, 2018, doi: 10.1109/ACCESS.2018.2859835.

Khan J, Ullah S, Ali U, Tahir FA, Peter I, Matekovits L. Design of a Millimeter-Wave MIMO Antenna Array for 5G Communication Terminals. Sensors. 2022; 22(7):2768. https://doi.org/10.3390/s22072768

Raheel K, Altaf A, Waheed A, Kiani SH, Sehrai DA, Tubbal F, Raad R. E-Shaped H-Slotted Dual Band mmWave Antenna for 5G Technology. Electronics. 2021; 10(9):1019. https://doi.org/10.3390/electronics10091019

Ullah, H.; Tahir, F.A. A broadband wire hexagon antenna array for future 5G communications in 28 GHz band. Microw. Opt. Technol. Lett. 2019, 61, 696–701.

Zhu, Q.; Ng, KB; Chan, C.H.; Luk, K.M. Substrate-integrated-waveguide-fed array antenna covering 57–71 GHz band for 5G applications. IEEE Trans. Antennas Propag. 2017, 65, 6298–6306.

Mao, C.; Gao, S.; Wang, Y. Broadband high-gain beam-scanning antenna array for millimeter-wave applications. IEEE Trans. Antennas Propag. 2017, 65, 4864–4868.

Ullah, H.; Tahir, F.A. A Novel Snowflake Fractal Antenna for Dual-Beam Applications in 28 GHz Band. IEEE Access, 2020, 8, 19873–19879.

E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, "Massive mimo for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014

Shamim, S.M., Dina, U.S., Arafin, N. et al. Design of Efficient 37 GHz Millimeter Wave Microstrip Patch Antenna for 5G Mobile Application. Plasmonics, 16, 1417–1425 (2021). https://doi.org/10.1007/reflection coefficient468-021-01412-x

Rashmitha R, Niran N, Abhinandan Ajit Jugale, Mohammed Riyaz Ahmed, Microstrip Patch Antenna Design for Fixed Mobile and Satellite 5G Communications, Procedia Computer Science, Volume 171, 2020, pp 2073-2079.

Balanis CA (1997) Antenna theory, analysis and design. John Wiley & Sons, Inc., New York.

Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Beam-steerable microstrip-fed bow-tie antenna array for fifth generation cellular communications. In Proceedings of the IEEE 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5.

M. E. Shorbagy, R. M. Shubair, M. I. AlHajri and N. K. Mallat, "On the design of millimetre-wave antennas for 5G," 2016 16th Mediterranean Microwave Symposium (MMS), 2016, pp. 1-4, doi: 10.1109/MMS.2016.7803878.

Abdelgader M. Abdalla; Jonathan Rodriguez; Issa Elfergani; Antonio Teixeira, "Millimeter Wave Antenna Design for 5G Applications," in Optical and Wireless Convergence for 5G Networks , IEEE, 2019, pp.139-156, doi: 10.1002/9781119491590.ch7.

Khan, J.; Ullah, S.; Ali, U.; Tahir, F.A.; Peter, I.; Matekovits, L. Design of a Millimeter-Wave MIMO Antenna Array for 5G Communication Terminals. Sensors 2022, 22, 2768. https://doi.org/10.3390/s22072768

Masood .U .R , Qammer .H .A, Atiqur. R , Imdad .K, Hassan .T .C and Mohammad .A .M, Millimetre-Wave Antennas and Systems for the Future 5G, International Journal of Antennas and Propagation, Hindawi, 2017.

Hong, W. (2016). Millimeter-Wave Antennas and Arrays. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_64.

Wang, Z., Liu, J., Wang, J. et al. Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array. Front Inform Technol Electron Eng 22, 560–570 (2021). https://doi.org/10.1631/FITEE.2000451

I. Laurinavicius, H. Zhu, J. Wang and Y. Pan, "Beam Squint Exploitation for Linear Phased Arrays in a mmWave Multi-Carrier System," 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.2019.9013598.

J. Yao, "Microwave Photonics," in Journal of Lightwave Technology, vol. 27, no. 3, pp. 314-335, Feb.1, 2009, doi: 10.1109/JLT.2008.2009551.

K. Bangash, M. M. Ali, H. Maab and R. A. Shaukat, "Effect of Embedding H-Shaped Slot on the Characteristics of Millimeter Wave Microstrip Patch Antenna for 5G Applications," 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, pp. 1-4, doi: 10.1109/ICOMET.2019.8673439.

K. Bangash, M. M. Ali, H. Maab and H. Ahmed, "Design of a Millimeter Wave Microstrip Patch Antenna and Its Array for 5G Applications," 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2019, pp. 1-6, doi: 10.1109/ICECCE47252.2019.8940807.

Przesmycki, R.; Bugaj, M.; Nowosielski, L. Broadband Microstrip Antenna for 5G Wireless Systems Operating at 28 GHz. Electronics 2021, 10, 1. https://doi.org/10.3390/electronics10010001.

S. Rangan, T. S. Rappaport and E. Erkip, "Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges," in Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, March 2014, doi: 10.1109/JPROC.2014.22993.




DOI: https://doi.org/10.33180/InfMIDEM2024.201

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bashar Qas Elias, Marwa M. Ismail, Bashar S. Bashar, Ali Ihsan Alanssari, Z.A Rhazali, Halina Misran

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.