Aerosol-Deposition Derived Graphite Thick Films for Electrochemical Sensors

Matej Šadl, Barbara Repič, Ivana Goričan, Danjela Kuščer, Hana Uršič

Abstract


Disposable electrochemical (EC) sensors are usually manufactured by screen printing and post-deposition temperature curing of the sensor's components. However, complete removal of an organic vehicle requires curing at temperatures of a few hundred °C, which can lead to electrode-substrate incompatibilities and limit the choice of material. In this work, graphite thick-film electrodes without additives were deposited on polyimide substrates at room temperature using the aerosol deposition method. The resulting thick films have good adhesion, a defect-free surface, a thickness of a few micrometers, a root-mean-square roughness of 0.68 μm and sheet resistance of 27 ohm/sq. Scanning electron microscopy of the film surface shows good particle compaction. The X-ray diffraction analysis shows no peak broadening of the graphite thick films, which indicates a different deposition mechanism than that normally observed for ceramic powders. The EC properties of graphite working electrodes were evaluated using cyclic voltammetry. The graphite films show low capacitive current of 0.114 mA, good reversibility of redox process, high EC active surface area of 1.44 cm2/cmgeo2 and standard heterogeneous electron transfer rate constant of 0.0019 cm·s–1. The aerosol-deposited graphite thick-film electrodes show potential for the EC detection of a broad range of chemicals

Keywords


graphite electrode; electrochemical detection; aerosol deposition method; room-temperature process; polyimide foil

Full Text:

PDF

References


J. Baranwal, B. Barse, G. Gatto, G. Broncova, and A. Kumar, “Electrochemical Sensors and Their Applications: A Review,” Chemosensors, vol. 10, no. 9, p. 363, 2022, https://doi.org/10.3390/chemosensors10090363.

G. Maduraiveeran and W. Jin, “Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications,” Trends Environ. Anal. Chem., vol. 13, pp. 10–23, 2017, https://doi.org/10.1016/j.teac.2017.02.001.

K. Ashley, “Developments in electrochemical sensors for occupational and environmental health applications,” J. Hazard. Mater., vol. 102, no. 1, pp. 1–12, 2003, https://doi.org/10.1016/S0304-3894(03)00198-5.

Y. Wang, H. Xu, J. Zhang, and G. Li, “Electrochemical Sensors for Clinic Analysis,” Sensors, vol. 8, no. 4, pp. 2043–2081, 2008, https://doi.org/10.3390/s8042043.

Z. Shi, L. Xia, and G. Li, “Recent Progress of Electrochemical Sensors in Food Analysis,” Chemosensors, vol. 11, no. 9, p. 478, 2023, https://doi.org/10.3390/chemosensors11090478.

A. C. de Sá et al., “Flexible Carbon Electrodes for Electrochemical Detection of Bisphenol-A, Hydroquinone and Catechol in Water Samples,” Chemosensors, vol. 8, no. 4, p. 103, 2020,

https://doi.org/10.3390/chemosensors8040103.

M. M. I. Khan, M. A. Yousuf, P. Ahamed, M. Alauddin, and N. T. Tonu, “Electrochemical Detection of Dihydroxybenzene Isomers at a Pencil Graphite Based Electrode,” ACS Omega, vol. 7, no. 33, pp. 29391–29405, 2022, https://doi.org/10.1021/acsomega.2c03651.

J. P. Metters, R. O. Kadara, and C. E. Banks, “New directions in screen printed electroanalytical sensors: an overview of recent developments,” Analyst, vol. 136, no. 6, p. 1067, 2011, https://doi.org/10.1039/c0an00894j.

R. O. Kadara, N. Jenkinson, and C. E. Banks, “Characterisation of commercially available electrochemical sensing platforms,” Sensors Actuators, B Chem., vol. 138, no. 2, pp. 556–562, 2009, https://doi.org/10.1016/j.snb.2009.01.044.

R. Umapathi, S. M. Ghoreishian, S. Sonwal, G. M. Rani, and Y. S. Huh, “Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables,” Coord. Chem. Rev., vol. 453, p. 214305, 2022, https://doi.org/10.1016/j.ccr.2021.214305.

C. E. Banks, C. W. Foster, and R. O. Kadara, Screen-Printing Electrochemical Architectures. Cham: Springer International Publishing, 2016.

R. A. Dorey, Ceramic Thick Films for MEMS and Microdevices. Oxford: Elsevier, 2012.

D. Kuscer, “Screen Printing,” in Encyclopedia of Materials: Technical Ceramics and Glasses, vol. 1, Elsevier, 2021, pp. 227–232, https://doi.org/10.1016/B978-0-12-803581-8.12082-X.

M. Kosec, D. Kuscer, and J. Holc, “Processing of Ferroelectric Ceramic Thick Films,” in Multifunctional Polycrystalline Ferroelectric Materials, Dordrecht: Springer, 2011, https://doi.org/10.1007/978-90-481-2875-4_2.

A. Mishra et al., “Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells,” Org. Electron., vol. 65, pp. 375–380, 2019, https://doi.org/10.1016/j.orgel.2018.11.046.

F. Cataldo, “A study on the thermal stability to 1000 °C of various carbon allotropes and carbonaceous matter both under nitrogen and in air,” Fullerenes, Nanotub. Carbon Nanostructures, vol. 10, no. 4, pp. 293–311, 2002, https://doi.org/10.1081/FST-120016451.

M. Schubert et al., “Powder aerosol deposition method — novel applications in the field of sensing and energy technology,” Funct. Mater. Lett., vol. 12, no. 05, p. 1930005, 2019, https://doi.org/10.1142/s1793604719300056.

D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, “An overview of the Aerosol Deposition method: Process fundamentals and new trends in materials applications,” J. Ceram. Sci. Technol., vol. 6, no. 3, pp. 147–181, 2015, https://doi.org/10.4416/JCST2015-00018.

J. Akedo, “Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices,” J. Therm. Spray Technol., vol. 17, no. 2, pp. 181–198, 2008, https://doi.org/10.1007/s11666-008-9163-7.

M. Linz et al., “Revealing the Deposition Mechanism of the Powder Aerosol Deposition Method Using Ceramic Oxide Core–Shell Particles,” Adv. Mater., p. 2308294, 2023, https://doi.org/10.1002/adma.202308294.

R. Saunders, S. D. Johnson, D. Schwer, E. A. Patterson, H. Ryou, and E. P. Gorzkowski, “A Self-Consistent Scheme for Understanding Particle Impact and Adhesion in the Aerosol Deposition Process,” J. Therm. Spray Technol., vol. 30, no. 3, pp. 523–541, 2021, https://doi.org/10.1007/s11666-021-01164-4.

N. H. Khansur, U. Eckstein, L. Benker, U. Deisinger, B. Merle, and K. G. Webber, “Room temperature deposition of functional ceramic films on low-cost metal substrate,” Ceram. Int., vol. 44, no. 14, pp. 16295–16301, 2018, https://doi.org/10.1016/j.ceramint.2018.06.027.

M. Sadl et al., “Energy-storage-efficient 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thick films integrated directly onto stainless steel,” Acta Mater., vol. 221, p. 117403, 2021, https://doi.org/10.1016/j.actamat.2021.117403.

M. Sadl, A. Lebar, J. Valentincic, and H. Ursic, “Flexible Energy-Storage Ceramic Thick-Film Structures with High Flexural Fatigue Endurance,” ACS Appl. Energy Mater., vol. 5, no. 6, pp. 6896–6902, 2022, https://doi.org/10.1021/acsaem.2c00518.

M. Sadl et al., “Multifunctional flexible ferroelectric thick-film structures with energy storage, piezoelectric and electrocaloric performance,” J. Mater. Chem. C, vol. 11, no. 29, pp. 10058–10068, 2023, https://doi.org/10.1039/D3TC01555F.

D. W. Lee, O. Y. Kwon, W. J. Cho, J. K. Song, and Y. N. Kim, “Characteristics and Mechanism of Cu Films Fabricated at Room Temperature by Aerosol Deposition,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, https://doi.org/10.1186/s11671-016-1378-9.

N. H. Khansur et al., “Enhanced Electromechanical Response and Thermal Stability of 0.93(Na1/2Bi1/2)TiO3-0.07BaTiO3 Through Aerosol Deposition of Base Metal Electrodes,” Adv. Mater. Interfaces, vol. 93, p. 2100309, 2021, https://doi.org/10.1002/admi.202100309.

Y.-H. Kim, J.-W. Lee, H.-J. Kim, Y.-H. Yun, and S.-M. Nam, “Silver metallization for microwave device using aerosol deposition,” Ceram. Int., vol. 38, pp. S201–S204, 2012, https://doi.org/10.1016/J.CERAMINT.2011.04.083.

M.-Y. Cho et al., “Formation of silver films for advanced electrical properties by using aerosol deposition process,” Jpn. J. Appl. Phys., vol. 57, no. 11S, p. 11UF05, 2018, https://doi.org/10.7567/JJAP.57.11UF05.

M. Sadl, U. Tomc, and H. Ursic, “Investigating the Feasibility of Preparing Metal–Ceramic Multi-Layered Composites Using Only the Aerosol-Deposition Technique,” Materials, vol. 14, no. 16, p. 4548, 2021, https://doi.org/10.3390/ma14164548.

V. Regis, M. Šadl, G. Brennecka, A. Bradeško, U. Tomc, and H. Uršič, “Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition,” Crystals, vol. 13, no. 5, p. 850, 2023, https://doi.org/10.3390/cryst13050850.

N. Leupold, S. Denneler, G. Rieger, and R. Moos, “Powder Treatment for Increased Thickness of Iron Coatings Produced by the Powder Aerosol Deposition Method and Formation of Iron–Alumina Multilayer Structures,” J. Therm. Spray Technol., vol. 30, no. 3, pp. 480–487, 2020, https://doi.org/10.1007/s11666-020-01098-3.

J. Kwon, H. Park, I. Lee, and C. Lee, “Effect of gas flow rate on deposition behavior of Fe-based amorphous alloys in vacuum kinetic spray process,” Surf. Coatings Technol., vol. 259, pp. 585–593, 2014, https://doi.org/10.1016/j.surfcoat.2014.10.026.

S. Baba, L. Huang, H. Sato, R. Funahashi, and J. Akedo, “Room-temperature fast deposition and characterization of nanocrystalline Bi0.4Sb1.6Te3 thick films by aerosol deposition,” J. Phys. Conf. Ser., vol. 379, no. 1, p. 012011, 2012, https://doi.org/10.1088/1742-6596/379/1/012011.

S. Baba, H. Sato, L. Huang, A. Uritani, R. Funahashi, and J. Akedo, “Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition,” J. Alloys Compd., vol. 589, pp. 56–60, 2014, https://doi.org/10.1016/j.jallcom.2013.11.180.

S. Sugimoto, T. Maeda, R. Kobayashi, J. Akedo, M. Lebedev, and K. Inomata, “Magnetic properties of Sm-Fe-N thick film magnets prepared by the aerosol deposition method,” IEEE Trans. Magn., vol. 39, no. 5, pp. 2986–2988, 2003, https://doi.org/10.1109/TMAG.2003.816715.

S. Sugimoto et al., “Nd2Fe14B/Fe3B nanocomposite film fabricated by aerosol deposition method,” J. Alloys Compd., vol. 408–412, pp. 1413–1416, 2006, https://doi.org/10.1016/j.jallcom.2005.04.044.

C.-W. Ahn et al., “Microstructure and electrochemical properties of graphite and C-coated LiFePO4 films fabricated by aerosol deposition method for Li ion battery,” Carbon N. Y., vol. 82, pp. 135–142, 2015, https://doi.org/10.1016/j.carbon.2014.10.043.

S. Michalkiewicz, A. Skorupa, and M. Jakubczyk, “Carbon materials in electroanalysis of preservatives: A review,” Materials, vol. 14, no. 24, 2021, https://doi.org/10.3390/ma14247630.

T. Gan and S. Hu, “Electrochemical sensors based on graphene materials,” Microchim. Acta, vol. 175, no. 1–2, pp. 1–19, 2011, https://doi.org/10.1007/s00604-011-0639-7.

A. C. Power, B. Gorey, S. Chandra, and J. Chapman, “Carbon nanomaterials and their application to electrochemical sensors: a review,” Nanotechnol. Rev., vol. 7, no. 1, pp. 19–41, 2018, https://doi.org/10.1515/ntrev-2017-0160.

E. Asadian, M. Ghalkhani, and S. Shahrokhian, “Electrochemical sensing based on carbon nanoparticles: A review,” Sensors Actuators B Chem., vol. 293, pp. 183–209, 2019, https://doi.org/10.1016/j.snb.2019.04.075.

Annu, S. Sharma, R. Jain, and A. N. Raja, “Review—Pencil Graphite Electrode: An Emerging Sensing Material,” J. Electrochem. Soc., vol. 167, no. 3, p. 037501, 2020, https://doi.org/10.1149/2.0012003JES.

M. Sadl, U. Tomc, U. Prah, and H. Ursic, “Protective Alumina Coatings Prepared by Aerosol Deposition on Magnetocaloric Gadolinium Elements,” Inf. MIDEM - J. Microelectron. Electron. Components Mater., vol. 49, no. 3, pp. 177–182, 2019, https://doi.org/10.33180/InfMIDEM2019.306.

I. Stojanoska et al., “Indium-zinc-oxide thin films produced by low-cost chemical solution deposition: Tuning the microstructure, optical and electrical properties with the processing conditions,” Heliyon, vol. 9, no. 9, p. e19744, 2023, https://doi.org/10.1016/j.heliyon.2023.e19744.

I. Lavagnini, R. Antiochia, and F. Magno, “An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data,” Electroanalysis, vol. 16, no. 6, pp. 505–506, 2004, https://doi.org/10.1002/elan.200302851.

D.-W. Lee et al., “Experimental and numerical study for Cu metal coatings at room temperature via powder spray process,” Surf. Coatings Technol., vol. 353, pp. 66–74, 2018, https://doi.org/10.1016/j.surfcoat.2018.08.075.

S. S. Manokhin, V. Y. Barinov, and O. A. Golosova, “Aerosol Deposition of MAX Phase-Based Coatings onto High-Temperature Nickel Alloy,” Int. J. Self-Propagating High-Temperature Synth., vol. 28, no. 3, pp. 210–212, 2019, https://doi.org/10.3103/S1061386219030087.

S. Choi, J.-H. Lim, E.-Y. Kang, H. Kim, Y.-M. Kong, and D.-Y. Jeong, “Deposition behavior of glass thick film formation on substrates with different hardness by aerosol deposition,” J. Asian Ceram. Soc., vol. 9, no. 3, pp. 1128–1136, 2021, https://doi.org/10.1080/21870764.2021.1943155.

M. Hatala, P. Gemeiner, M. Hvojnik, and M. Mikula, “The effect of the ink composition on the performance of carbon-based conductive screen printing inks,” J. Mater. Sci. Mater. Electron., vol. 30, no. 2, pp. 1034–1044, 2019, https://doi.org/10.1007/s10854-018-0372-7.

“Int. Centre Diffraction Data (ICDD) PDF-4+/Web 2023.” 2023, https://www.icdd.com/assets/files/2023-PDF-4-Web-Flyer.pdf.

J. Exner, M. Schubert, D. Hanft, J. Kita, and R. Moos, “How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films,” J. Eur. Ceram. Soc., vol. 39, no. 2–3, pp. 592–600, 2019, https://doi.org/10.1016/j.jeurceramsoc.2018.08.008.

M. Dekleva et al., “An innovative pretreatment protocol to eliminate silver contamination-induced voltammetric interference on graphite-glass working electrode,” Electrochem. commun., vol. 162, p. 107707, 2024, https://doi.org/10.1016/j.elecom.2024.107707.

M. G. Trachioti, A. C. Lazanas, and M. I. Prodromidis, “Shedding light on the calculation of electrode electroactive area and heterogeneous electron transfer rate constants at graphite screen-printed electrodes,” Microchim. Acta, vol. 190, no. 7, p. 251, 2023, https://doi.org/10.1007/s00604-023-05832-w.

A. Pop, I. Birsan, C. Orha, R. Pode, and F. Manea, “Carbon-Based Electrode for Parabens Detection,” vol. 10, no. 9, pp. 1228–1236, 2016, https://doi.org/10.5281/zenodo.1127017.

P. K. Jiwanti, B. Y. Wardhana, L. G. Sutanto, and M. F. Chanif, “A Review on Carbon‐based Electrodes for Electrochemical Sensor of Quinolone Antibiotics,” ChemistrySelect, vol. 7, no. 15, 2022, https://doi.org/10.1002/slct.202103997.

W. Duan, M. R. Baez-Gaxiola, M. Gich, and C. Fernández-Sánchez, “Detection of chlorinated organic pollutants with an integrated screen-printed electrochemical sensor based on a carbon nanocomposite derived from bread waste,” Electrochim. Acta, vol. 436, p. 141459, 2022, https://doi.org/10.1016/j.electacta.2022.141459.

A. M. Abdel-Aziz, H. H. Hassan, and I. H. A. Badr, “Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples,” ACS Omega, vol. 7, no. 38, pp. 34127–34135, 2022, https://doi.org/10.1021/acsomega.2c03427.




DOI: https://doi.org/10.33180/InfMIDEM2024.302

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Matej Šadl, Barbara Repič, Ivana Goričan, Danjela Kuščer, Hana Uršič

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.