Electrocaloric and pyroelectric properties of 0.6Ba0.85Ca0.15Zr0.10Ti0.90O3 –0.4BaTi0.89Sn0.11O3 ceramics
Abstract
Keywords
Full Text:
PDFReferences
B. Malič, M. Otoničar, K. Radan, and J. Koruza, “Lead-Free Piezoelectric Ceramics,” in Encyclopedia of Materials: Technical Ceramics and Glasses, (Ed. :M. Pomeroy), Ed. Amsterdam: Elsevier BV, 2021, pp. V3-358-V3-368, https://doi.org/10.1016/B978-0-12-803581-8.12131-9.
S. Zhang, B. Malič, J. F. Li, and J. Rödel, “Lead-free ferroelectric materials: Prospective applications,” J. Mater. Res., vol. 36, no. 5, pp. 985–995, Mar. 2021, https://doi.org/10.1557/s43578-021-00180-y.
J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the development of lead-free piezoceramics,” J. Am. Ceram. Soc., vol. 92, no. 6, pp. 1153–1177, Jun. 2009, https://doi.org/10.1111/j.1551-2916.2009.03061.x.
J. Rödel and J. F. Li, “Lead-free piezoceramics: Status and perspectives,” MRS Bull., vol. 43, no. 8, pp. 576–580, Aug. 2018, https://doi.org/10.1557/mrs.2018.181.
Z. Kutnjak, B. Rožič, and R. Pirc, “Electrocaloric Effect: Theory, Measurements, and Applications,” in Wiley Encyclopedia of Electrical and Electronics Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015, pp. 1–19, https://doi.org/10.1002/047134608x.w8244.
X. Moya and N. D. Mathur, “Caloric materials for cooling and heating,” Science (80-. )., vol. 370, no. 6518, pp. 797–803, Nov. 2020, https://doi.org/10.1126/science.abb0973.
A. Torelló and E. Defay, “Electrocaloric Coolers: A Review,” Adv. Electron. Mater., vol. 8, no. 6, Jun. 2022, https://doi.org/10.1002/aelm.202101031.
Z. Kutnjak and B. Rožič, “Indirect and Direct Measurements of the Electrocaloric Effect,” in Engineering Materials, (Ed.:Tatiana Correia and Qi Zhang), Ed. Berlin, Heidelberg: Springer, 2014, pp. 147–182, https://doi.org/10.1007/978-3-642-40264-7_7.
A. L. Kholkin, O. V. Pakhomov, A. A. Semenov, and A. Tselev, “The Electrocaloric Effect: Materials and Applications,” Electrocaloric Eff. Mater. Appl., pp. 1–433, 2023, https://doi.org/10.1016/C2019-0-02843-9.
X. Chen, V. V. Shvartsman, D. C. Lupascu, and Q. M. Zhang, “Electrocaloric cooling - From materials to devices,” J. Appl. Phys., vol. 132, no. 24, Dec. 2022, https://doi.org/10.1063/5.0132533.
Z. Fan, X. Liu, and X. Tan, “Large electrocaloric responses in [Bi1/2(Na,K)1/2]TiO3-based ceramics with giant electro-strains,” J. Am. Ceram. Soc., vol. 100, no. 5, pp. 2088–2097, May 2017, https://doi.org/10.1111/jace.14777.
S. Pandya et al., “New approach to waste-heat energy harvesting: pyroelectric energy conversion,” NPG Asia Mater., vol. 11, no. 1, p. 26, Dec. 2019, https://doi.org/10.1038/s41427-019-0125-y.
F. Y. Lee, A. Navid, and L. Pilon, “Pyroelectric waste heat energy harvesting using heat conduction,” Appl. Therm. Eng., vol. 37, pp. 30–37, May 2012, https://doi.org/10.1016/j.applthermaleng.2011.12.034.
P. Lheritier et al., “Large harvested energy with non-linear pyroelectric modules,” Nature, vol. 609, no. 7928, pp. 718–721, Sep. 2022, https://doi.org/10.1038/s41586-022-05069-2.
D. Zhang, H. Wu, C. R. Bowen, and Y. Yang, “Recent Advances in Pyroelectric Materials and Applications,” Small, vol. 17, no. 51, Dec. 2021, https://doi.org/10.1002/smll.202103960.
S. P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, and R. W. Whatmore, “Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion,” MRS Bull., vol. 39, no. 12, pp. 1099–1111, Dec. 2014, https://doi.org/10.1557/mrs.2014.256.
C. R. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, and R. Vaish, “Pyroelectric materials and devices for energy harvesting applications,” Energy Environ. Sci., vol. 7, no. 12, pp. 3836–3856, 2014, https://doi.org/10.1039/c4ee01759e.
S. Patel et al., “Thermomechanical Energy Conversion Potential of Lead-Free 0.50Ba(Zr0.2Ti0.8)O3–0.50(Ba0.7Ca0.3)TiO3 Bulk Ceramics,” Energy Technol., vol. 6, no. 5, pp. 872–882, May 2018, https://doi.org/10.1002/ente.201700416.
D. Ando and K. ichi Kakimoto, “Pyroelectric energy harvesting using low–TC (1–x)(Ba0.7Ca0.3)TiO3–xBa(Zr0.2Ti0.8)O3 bulk ceramics,” J. Am. Ceram. Soc., vol. 101, no. 11, pp. 5061–5070, Nov. 2018, https://doi.org/10.1111/jace.15746.
H. Kacem et al., “Relaxor characteristics and pyroelectric energy harvesting performance of BaTi0.91Sn0.09O3 ceramic,” J. Alloys Compd., vol. 872, p. 159699, 2021, https://doi.org/10.1016/j.jallcom.2021.159699.
F. Yan, J. Qian, S. Wang, and J. Zhai, “Progress and outlook on lead-free ceramics for energy storage applications,” Nano Energy, vol. 123, p. 109394, May 2024, https://doi.org/10.1016/j.nanoen.2024.109394.
L. Yang et al., “Perovskite lead-free dielectrics for energy storage applications,” Prog. Mater. Sci., vol. 102, pp. 72–108, May 2019, https://doi.org/10.1016/j.pmatsci.2018.12.005.
H. Zhang et al., “A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors,” J. Mater. Chem. C, vol. 8, no. 47, pp. 16648–16667, 2020, https://doi.org/10.1039/d0tc04381h.
A. Jain, Y. G. Wang, and L. N. Shi, “Recent developments in BaTiO3 based lead-free materials for energy storage applications,” J. Alloys Compd., vol. 928, 2022, https://doi.org/10.1016/j.jallcom.2022.167066.
V. Veerapandiyan, F. Benes, T. Gindel, and M. Deluca, “Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: A review,” Materials (Basel)., vol. 13, no. 24, pp. 1–47, Dec. 2020, https://doi.org/10.3390/ma13245742.
V. Veerapandiyan et al., “Origin of Relaxor Behavior in Barium-Titanate-Based Lead-Free Perovskites,” Adv. Electron. Mater., vol. 8, no. 2, Feb. 2022, https://doi.org/10.1002/aelm.202100812.
Y. Yao et al., “Large piezoelectricity and dielectric permittivity in BaTiO 3-xBaSnO 3 system: The role of phase coexisting,” Epl, vol. 98, no. 2, 2012, https://doi.org/10.1209/0295-5075/98/27008.
T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 111–124, Sep. 2007, https://doi.org/10.1007/s10832-007-9047-0.
Y. Zhang, L. Chen, H. Liu, S. Deng, H. Qi, and J. Chen, “High-performance ferroelectric based materials via high-entropy strategy: Design, properties, and mechanism,” InfoMat, vol. 5, no. 12, Dec. 2023, https://doi.org/10.1002/inf2.12488.
C. Zhao, B. Wu, and J. Wu, “Composition-driven broad phase boundary for optimizing properties and stability in lead-free barium titanate ceramics,” J. Am. Ceram. Soc., vol. 102, no. 6, pp. 3477–3487, 2019, https://doi.org/10.1111/jace.16194.
M. Acosta et al., “BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives,” Appl. Phys. Rev., vol. 4, no. 4, Dec. 2017, https://doi.org/10.1063/1.4990046.
G. Canu et al., “Structure-property correlations and origin of relaxor behaviour in BaCexTi1-xO3,” Acta Mater., vol. 152, pp. 258–268, Jun. 2018, https://doi.org/10.1016/j.actamat.2018.04.038.
S. W. Konsago, A. Debevec, J. Cilenšek, B. Kmet, and B. Malič, “Linear Thermal Expansion of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Bulk Ceramic,” Inf. MIDEM, vol. 53, no. 4, pp. 233–238, Feb. 2023, https://doi.org/10.33180/InfMIDEM2023.403.
S. Merselmiz et al., “Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic,” RSC Adv., vol. 11, no. 16, pp. 9459–9468, 2021, https://doi.org/10.1039/D0RA09707A.
S. Merselmiz et al., “High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic,” Ceram. Int., vol. 46, no. 15, pp. 23867–23876, Jun. 2020, https://doi.org/10.1016/j.ceramint.2020.06.163.
S. Merselmiz et al., “Design of lead-free BCZT-based ceramics with enhanced piezoelectric energy harvesting performances,” Phys. Chem. Chem. Phys., 2022, https://doi.org/10.1039/D1CP04723J.
W. Cai et al., “Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics,” J. Mater. Sci., vol. 55, no. 23, pp. 9972–9992, Aug. 2020, https://doi.org/10.1007/s10853-020-04771-8.
H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, “High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook,” Adv. Funct. Mater., vol. 28, no. 42, p. 1803665, Oct. 2018, https://doi.org/10.1002/adfm.201803665.
Y. Zhou, Q. Lin, W. Liu, and D. Wang, “Compositional dependence of electrocaloric effect in lead-free (1 - X)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics,” RSC Adv., vol. 6, no. 17, pp. 14084–14089, 2016, https://doi.org/10.1039/c5ra26692k.
C. Zhao, J. Yang, Y. Huang, X. Hao, and J. Wu, “Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions,” J. Mater. Chem. A, vol. 7, no. 44, pp. 25526–25536, 2019, https://doi.org/10.1039/c9ta10164k.
S. Patel, P. Sharma, and R. Vaish, “Enhanced electrocaloric effect in Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9–x Sn x O 3 ferroelectric ceramics,” Phase Transitions, vol. 89, no. 11, 2016, https://doi.org/10.1080/01411594.2016.1144752.
S. Merselmiz et al., “Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics,” J. Mater. Sci. Mater. Electron., vol. 31, no. 19, pp. 17018–17028, Oct. 2020, https://doi.org/10.1007/s10854-020-04259-w.
L. B. Kong, H. Huang, and S. Li, “Fundamentals of Ferroelectric Materials,” in Ferroelectric Materials for Energy Applications, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 1–31, https://doi.org/10.1002/9783527807505.ch1.
B. Zhang et al., “Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics,” Ceram. Int., vol. 47, no. 1, pp. 1101–1108, Jan. 2021, https://doi.org/10.1016/j.ceramint.2020.08.226.
P. Wu et al., “Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary,” J. Alloys Compd., vol. 725, pp. 275–282, Nov. 2017, https://doi.org/10.1016/j.jallcom.2017.07.103.
X. Wang et al., “Giant electrocaloric effect in lead-free Ba 0.94 Ca 0.06 Ti 1− x Sn x O 3 ceramics with tunable Curie temperature,” Appl. Phys. Lett., vol. 107, no. 25, p. 252905, Dec. 2015, https://doi.org/10.1063/1.4938134.
S. Liu et al., “Tunable electrocaloric and energy storage behavior in the Ce, Mn hybrid doped BaTiO3 ceramics,” J. Eur. Ceram. Soc., vol. 38, no. 14, pp. 4664–4669, Nov. 2018, https://doi.org/10.1016/j.jeurceramsoc.2018.06.020.
Z. Li, C. Molin, A. Michaelis, and S. E. Gebhardt, “Modified (Ba,Sr)(Sn,Ti)O3 via hydrothermal synthesis for electrocaloric application,” Open Ceram., vol. 16, p. 100502, Dec. 2023, https://doi.org/10.1016/j.oceram.2023.100502.
Z. Liu et al., “ Large electrocaloric and pyroelectric energy harvesting effect over a broad temperature range via modulating the relaxor behavior in non-relaxor ferroelectrics ,” J. Mater. Chem. A, vol. 9, no. 38, pp. 22015–22024, 2021, https://doi.org/10.1039/d1ta03894j.
Y. Zhao, X. Q. Liu, S. Y. Wu, and X. M. Chen, “Electrocaloric effect and pyroelectric energy harvesting in diffuse ferroelectric Ba(Ti1-xCex)O3 ceramics,” J. Electroceramics, vol. 43, no. 1–4, pp. 106–116, Dec. 2019, https://doi.org/10.1007/s10832-019-00183-6.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Soukaina Merselmiz
This work is licensed under a Creative Commons Attribution 4.0 International License.