Effect of the nitrogen environment on indium gal-lium zinc oxide thin film transistors with low tem-perature ultraviolet annealing

Kunsik An, Yoon-Jae Moon, Jun Young Kim, Joel Ndikumana, Kyung-Tae Kang

Abstract


This study explores the influence of nitrogen gas flow rate on the electrical characteristics of indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) annealed under heat-assisted UV illumination. The aim is to understand how nitrogen flow rates impact the performance of solution-processed IGZO TFTs annealed at low temperatures, which is crucial for developing high-performance devices for next-generation electronics and temperature-sensitive applications. The IGZO TFTs were fabricated on glass substrates using a bottom-gate top-contact configuration, with the IGZO thin film deposited by inkjet printing and annealed in a chamber with varying nitrogen gas flow rates (0.5, 1, 2, and 5 L/min) at 250°C for 2 hours under UV illumination. The electrical characteristics were extracted from transfer characteristics measurements. The results show that a nitrogen flow rate of 1 L/min enhances the electrical properties of IGZO TFTs, likely due to a suitable concentration of oxygen vacancies. Excessive N2 flow rates (>1 L/min) negatively impact on the TFT characteristics, while lower flow rates (<1 L/min) result in more negative threshold voltages and lower on/off current ratios. The study concludes that optimizing the nitrogen gas flow rate is critical for achieving desired TFT properties, offering a valuable tool for fine-tuning IGZO TFTs to meet specific application requirements.

Keywords


IGZO TFTs; Low temperature; Nitrogen Annealing Effect; Oxide Semiconductor; Thin Film Transistor.

Full Text:

PDF

References


J.-Y. Pyo and W.-J. Cho, “In-plane-gate a-IGZO thin-film transistor for high-sensitivity pH sensor applications,” Sens Actuators B Chem, vol. 276, pp. 101–106, Dec. 2018, https://doi.org/10.1016/j.snb.2018.08.087.

Y.-C. Shen, C.-H. Yang, S.-W. Chen, S.-H. Wu, T.-L. Yang, and J.-J. Huang, “IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies,” Biosens Bioe-lectron, vol. 54, pp. 306–310, Apr. 2014, https://doi.org/10.1016/j.bios.2013.10.043.

J. Yoon et al., “Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors,” J Alloys Compd, vol. 817, p. 152788, Mar. 2020, https://doi.org/10.1016/j.jallcom.2019.152788.

H. Chen, Y. Cao, J. Zhang, and C. Zhou, “Large-scale complementary macroelectron-ics using hybrid integration of carbon nano-tubes and IGZO thin-film transistors,” Nat Commun, vol. 5, no. 1, p. 4097, Jun. 2014, https://doi.org/10.1038/ncomms5097.

H. Hosono, “How we made the IGZO transis-tor,” Nat Electron, vol. 1, no. 7, pp. 428–428, Jul. 2018, https://doi.org/10.1038/s41928-018-0106-0.

S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, “Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors,” Thin Solid Films, vol. 519, no. 15, pp. 5146–5149, May 2011, https://doi.org/10.1016/j.tsf.2011.01.074.

T. T. Trinh et al., “Improvement in the per-formance of an InGaZnO thin-film transistor by controlling interface trap densities be-tween the insulator and active layer,” Semi-cond Sci Technol, vol. 26, no. 8, p. 085012, Aug. 2011, https://doi.org/10.1088/0268-1242/26/8/085012.

C. Peng, S. Yang, C. Pan, X. Li, and J. Zhang, “Effect of Two-Step Annealing on High Sta-bility of a-IGZO Thin-Film Transistor,” IEEE Trans Electron Devices, vol. 67, no. 10, pp. 4262–4268, Oct. 2020, https://doi.org/10.1109/TED.2020.3017718.

J. W. Park, B. H. Kang, and H. J. Kim, “A Re-view of Low‐Temperature Solution‐Processed Metal Oxide Thin‐Film Transistors for Flexi-ble Electronics,” Adv Funct Mater, vol. 30, no. 20, May 2020, https://doi.org/10.1002/adfm.201904632.

S. J. Heo, D. H. Yoon, T. S. Jung, and H. J. Kim, “Recent advances in low-temperature solution-processed oxide backplanes,” Jour-nal of Information Display, vol. 14, no. 2, pp. 79–87, Jun. 2013, https://doi.org/10.1080/15980316.2013.806274.

Y.-L. Tsai et al., “Improving Reliability of High-Performance Ultraviolet Sensor in a-InGaZnO Thin-Film Transistors,” IEEE Elec-tron Device Letters, vol. 40, no. 9, pp. 1455–1458, Sep. 2019, https://doi.org/10.1109/LED.2019.2929624.

S. H. Cho, M. J. Choi, K. B. Chung, and J. S. Park, “Low temperature processed InGaZnO oxide thin film transistor using ultra-violet ir-radiation,” Electronic Materials Letters, vol. 11, no. 3, pp. 360–365, May 2015, https://doi.org/10.1007/s13391-015-4442-1.

M. Benwadih, R. Coppard, K. Bonrad, A. Klyszcz, and D.

Vuillaume, “High Mobility Flexible Amorphous IGZO Thin-Film Transis-tors with a Low Thermal Budget Ultra-Violet Pulsed Light Process,” ACS Appl Mater Inter-faces, vol. 8, no. 50, pp. 34513–34519, Dec. 2016, https://doi.org/10.1021/acsami.6b09990.

J. Yoon et al., “Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors,” J Alloys Compd, vol. 817, p. 152788, Mar. 2020, https://doi.org/10.1016/j.jallcom.2019.152788.

H.-L. Zhao et al., “Impact of pre-annealing process on electrical properties and stability of indium zinc oxide thin-film transistors,” Sci Rep, vol. 12, no. 1, p. 19497, Nov. 2022, https://doi.org/10.1038/s41598-022-24093-w.

J. Yoon et al., “Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors,” J Alloys Compd, vol. 817, p. 152788, Mar. 2020, https://doi.org/10.1016/j.jallcom.2019.152788.

K. Lee, L. Jung, and H. Hwang, “Study of high-pressure hydrogen annealing effects on InGaZnO thin-film transistors,” Appl Phys Lett, vol. 121, no. 7, Aug. 2022, https://doi.org/10.1063/5.0098444.

E. Carlos, R. Branquinho, R. Martins, and E. Fortunato, “New challenges of printed high-к oxide dielectrics,” Solid State Electron, vol. 183, p. 108044, Sep. 2021, https://doi.org/10.1016/j.sse.2021.108044.

E. Carlos, R. Branquinho, P. Barquinha, R. Martins, and E. Fortunato, “New strategies toward high-performance and low-temperature processing of solution-based metal oxide TFTs,” in Chemical Solution Syn-thesis for Materials Design and Thin Film Device Applications, Elsevier, 2021, pp. 585–621, https://doi.org/10.1016/B978-0-12-819718-9.00003-0.

Q. Zhang, C. Ruan, G. Xia, H. Gong, and S. Wang, “Low-temperature solution-processed InGaZnO thin film transistors by using light-wave-derived annealing,” Thin Solid Films, vol. 723, p. 138594, Apr. 2021, https://doi.org/10.1016/j.tsf.2021.138594.

W.-G. Kim, Y. J. Tak, B. Du Ahn, T. S. Jung, K.-B. Chung, and H. J. Kim, “High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C,” Sci Rep, vol. 6, no. 1, p. 23039, Mar. 2016, https://doi.org/10.1038/srep23039.

W.-G. Kim, Y. J. Tak, B. Du Ahn, T. S. Jung, K.-B. Chung, and H. J. Kim, “High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C,” Sci Rep, vol. 6, no. 1, p. 23039, Mar. 2016, https://doi.org/10.1038/srep23039.

S. Yoon et al., “Study of Nitrogen High-Pressure Annealing on InGaZnO Thin-Film Transistors,” ACS Appl Mater Interfaces, vol. 6, no. 16, pp. 13496–13501, Aug. 2014, https://doi.org/10.1021/am502571w.

K. Lee, L. Jung, and H. Hwang, “Study of high-pressure hydrogen annealing effects on InGaZnO thin-film transistors,” Appl Phys Lett, vol. 121, no. 7, Aug. 2022, https://doi.org/10.1063/5.0098444.

C.-I. Lin, T.-W. Yen, H.-C. Lin, T.-Y. Huang, and Y.-S. Lee, “Effect of annealing ambient on the characteristics of a-IGZO thin film transistors,” in The 4th IEEE International NanoElectronics Conference, 2011, pp. 1–2, https://doi.org/10.1109/INEC.2011.5991738.

S. Park, S. Bang, S. Lee, J. Park, Y. Ko, and H. Jeon, “The Effect of Annealing Ambient on the Characteristics of an Indium–Gallium–Zinc Oxide Thin Film Transistor,” J Nanosci Nanotechnol, vol. 11, no. 7, pp. 6029–6033, Jul. 2011, https://doi.org/10.1166/jnn.2011.4360.

H. Im, J. A. Noh, J. Jang, and Y. Hong, “The effects of annealing process under H2/N2 environment on the characteristics of low temperature so-lution processed InGaZnO thin film transis-tors,” in IEEE Photonic Society 24th Annual Meeting, 2011, pp. 559–560, https://doi.org/10.1109/PHO.2011.6110670.

K. Takechi, M. Nakata, T. Eguchi, H. Yama-guchi, and S. Kaneko, “Temperature-Dependent Transfer Characteristics of Amor-phous InGaZnO 4 Thin-Film Transistors,” Jpn J Appl Phys, vol. 48, no. 1R, p. 011301, Jan. 2009, https://doi.org/10.1143/JJAP.48.011301.

S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, “Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors,” Thin Solid Films, vol. 519, no. 15, pp. 5146–5149, May 2011, https://doi.org/10.1016/j.tsf.2011.01.074.

Y.-H. Kim et al., “Flexible metal-oxide devic-es made by room-temperature photochemical activation of sol–gel films,” Nature, vol. 489, no. 7414, pp. 128–132, Sep. 2012, https://doi.org/10.1038/nature11434.

T. T. T. Nguyen, O. Renault, B. Aventurier, G. Rodriguez, J. P. Barnes, and F. Templier, “Analysis of IGZO Thin-Film Transistors by XPS and Relation With Electrical Character-istics,” Journal of Display Technology, vol. 9, no. 9, pp. 770–774, Sep. 2013, https://doi.org/10.1109/JDT.2013.2280842.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semicon-ductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, https://doi.org/10.1038/nature03090.




DOI: https://doi.org/10.33180/InfMIDEM2025.306

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Joel Ndikumana, Kunsik An, Yoon-Jae Moon, Kyung-Tae Kang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.