Investigations on the Influence of Selected Factors on Thermal Parameters of Impulse-Transformers

Krzysztof Górecki, Krzysztof Górski, Janusz Zarębski


In the paper the results of experimental investigations illustrating the influence of the selected factors on parameters of the thermal model of the transformer are presented. The form of this model and the applied method of measurements of the transformer structural components’ self and mutual transient thermal impedances are described. The influence of the selection of material of the core, its geometrical dimensions, spatial orientation, shape of the core, frequency of the primary winding current in the transformer and power lost  in this element on the considered thermal parameters of the transformer are discussed. An analytical formula describing the dependence of the considered transient thermal impedances on the internal temperature of the windings is proposed and verified experimentally.


thermal parameters, selfheating, impulse transformer

Full Text:



Kazimierczuk M.K.: Pulse-width Modulated DC-DC Power Converters. John Wiley&Sons, 2008.

Ericson R., Maksimovic D., Fundamentals of Power Electronics, Norwell, Kluwer Academic Publisher, 2001.

Rashid M.H.: Power Electronic Handbook, Academic Press, Elsevier, 2007.

Van den Bossche A., Valchev V.C.: Inductors and transformers for Power Electronics. CRC Press, Taylor & Francis Group Boca Raton, 2005.

Górecki K, Rogalska M.: The compact thermal model of the pulse transformer. Microelectronics Journal, No. 45, 2014, pp. 1795-1799.

Wilson P.R., Ross J.N., Brown A.D.: Simulation of magnetic component models in electric circuits including dynamic thermal effects. IEEE Trans. on Power Electronics, Vol. 17, No. 1, 2002, pp. 55-65.

Górecki K., Zarębski J.: Electrothermal analysis of the self-excited push-pull dc-dc converter. Microelectronics Reliability, Vol. 49, No.4, 2009, pp. 424-430.

Górecki K., Rogalska M., Zarębski J.: Parameter estimation of the electrothermal model of the ferromagnetic core. Microelectronics Reliability, Vol. 54, No. 5, 2014, pp. 978-984.

Allahbakhshi M., Akbari A.: An improved computational approach for thermal modeling of power transformers. International Transactions on Electrical Energy Systems, Vol. 25, No. 7, 2015, pp. 1319-1332.

Penabad-Duran P., Lopez-Fernandez X.M., Turowski J.: 3D non-linear magneto-thermal behavior on transformer covers. Electric Power Systems Research, Vol. 121, 2015, pp. 333-340.

Sitar R., Janic Z., Stih Z.: Improvement of thermal performance of generator step-up transformers. Applied Thermal Engineering, Vol. 78, 2015, pp. 516-524.

Tsli M.A., Amoiralis E.I., Kladas A.G., Souflaris A.T.: Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model. International Journal of Thermal Sciences, Vol. 53, 2012, pp. 188-201.

Bernardoni M., Delmonte N., Cova P., Menozzi R.: Thermal modeling of planar transformer for switching power converters. Microelectronics Reliability, Vol. 50, No. 9-11, 2010, pp. 1778-1782.

Tsli M.A., Amoiralis E.I., Kladas A.G., Souflaris A.I.: Hybrid numerical-analytical technique for power transformer thermal modeling. IEEE Transactions on Magnetics, Vol. 45, No. 3, 2009, pp. 1408-1411.

Villar I., Viscarret U., Etxeberia-Otadui I., Rufer A.: Transient thermal model of a medium frequency power transformer. 34th Annual Conference of the IEEE Industrial Electronics Society IECON 2008, Vol. 1-5, 2008, pp. 982-987.

Górecki K., Zarębski J.: Modeling the influence of selected factors on thermal resistance of semiconductor devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 3, 2014, pp. 421-428.

Górecki K., Zarębski J.: Nonlinear compact thermal model of power semiconductor devices. IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 3, 2010, pp. 643-647.

Oettinger F.F., Blackburn D.L.: Semiconductor Measurement Technology: Thermal Resistance Measurements, U. S. Department of Commerce, NIST/SP-400/86, 1990.

Szekely V.: A New Evaluation Method of Thermal Transient Measurement Results. Microelectronic Journal, Vol. 28, No. 3, 1997, pp. 277-292.

Janke W., Blakiewicz G., Semi analytical recursive algorithms for convolution calculations, IEE Proc.- Circuits Devices Systems, Vol. 142, No. 2, 1995, pp. 125-130

Zarębski J., Górecki K.: Properties of Some Convolution Algorithms for the Thermal Analysis of Semiconductor Devices. Applied Mathematical Modelling, Elsevier, Vol. 31, No. 8, 2007, pp.1489 – 1496.

Górecki K., Detka K.: Electrothermal model of choking-coils for the analysis of dc-dc converters. Materials Science & Engineering B, Vol. 177, No. 15, 2012, pp. 1248-1253.

Pietrenko W., Janke W., Kazimierczuk M.K.: Application of semianalytical recursive convolution algorithms for large-signal time-domain simulation of switch-mode power converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, No. 10, 2001; pp. 1246-52.

Bagnoli P.E., Casarosa C., Ciampi M., Dallago E.: Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization – Part I: Fundamentals and Theory. IEEE Transactions on Power Electronics, Vol. 13, No. 6, 1998, pp. 1208-1219.

Górecki K., Zarębski J., Detka K., Rogalska M.: The method and circuit for measuring own and mutual thermal resistances of a magnetic device. European Patent Application EP 13460073, 2013.

Górecki K., Górski K.: The influence of core material on transient thermal impedances in transformers. Journal of Physics: Conference Series, Vol. 709, 2016, MicroTherm’2015 and SENM’2015, 012010, pp. 1-7, doi:10.1088/1742-6596/709/1/012010


  • There are currently no refbacks.

Copyright (c) 2017 Informacije MIDEM