On the Finite-Element Analysis of Resonance MEMS Structures based on Acoustic Lamb Waves

Pavel Marinushkin, Alexey Levitsky, Fyodor Zograf, Valentina Bakhtina


This paper considers issues of modeling ultra-high frequency MEMS resonators based on acoustic Lamb waves. In addition, the analysis of factors that determine whether it is possible to increase resonators working frequency and quality factor is carried out. Influence of resonator excitation scheme and acoustic waveguide thickness for a range of piezoelectric materials (i.e. AlN, ZnO, GaN) on phase velocity for acoustic Lamb wave zero modes is investigated. As a result, we've got estimations determining dependence of resonators electromechanical coupling coefficient on their geometry.


acoustic waves; finite element method; microelectromechanical systems (MEMS); piezoelectric films; microwave resonators

Full Text:



J. Basu, T. K. Bhattacharyya, “Microelectromechanical Resonators for Radio Frequency Communication Applications,” Microsyst. Technol., vol. 17, no. 10–11, pp. 1557-1580, 2011. https://doi.org/10.1007/s00542-011-1332-9.

A. A. Levitskiy, P. S. Marinushkin, “Design and Research of the Micromechanical Resonator,” Izvestiya vuz. Fizika, vol. 56, no. 8-3, pp. 159–161, 2013. (in Russian).

Y. Hou, M. Zhang, G. Han, C. Si, Y. Zhao, J. Ning, “A review: Aluminum nitride MEMS contour-mode resonator,” J. Semicond., vol. 37, no. 10, 101001, 2016. https://doi.org/10.1088/1674-4926/37/10/101001.

J. Zou, C. S. Lam, “Electrode design of AlN Lamb wave resonators,” in 2016 IEEE International Frequency Control Symposium (IFCS) Proceedings, 2016, pp. 1–5. https://doi.org/10.1109/FCS.2016.7563573.

V. Pashchenko, R. Matloub, F. Parsapourkolour, P. Muralt, S. Ballandras, K. Haffner, “Hybrid BAW/SAW AlN and AlScN thin film resonator,” in 2016 IEEE International Ultrasonics Symposium (IUS) Proceedings, pp. 1–4, 2016. https://doi.org/10.1109/ULTSYM.2016.7728649

C. Tu, J. Lee, “VHF-band biconvex AlN-on-silicon micromechanical resonators with enhanced quality factor and suppressed spurious modes,” J. Micromech. Microeng., vol. 26, no. 6, 065012, 2016. https://doi.org/10.1088/0960-1317/26/6/065012/

G. Chen, C. Cassella, Z. Qian, G. E. Hummel, M. Rinaldi, “Lithographically defined aluminium nitride cross-sectional Lamé mode resonators,” J. Micromech. Microeng., vol. 2, no. 3, 034003, 2017. https://doi.org/10.1088/1361-6439/aa5a83.

M. Wei, A. Avila, I. Rivera, M. Baghelani, J. Wang, “ZnO on nickel RF micromechanical resonators for monolithic wireless communication applications,” J. Micromech. Microeng., vol. 27, no. 5, 05506, 2017. https://doi.org/10.1088/1361-6439/aa635c.

A. Frangi, M. Cremonesi, A. Jaakkola, T. Pensala, “Analysis of anchor and interface losses in piezoelectric MEMS resonators,” Sens. Actuators, A, vol. 190, pp. 127–135, 2013. https://doi.org/10.1016/j.sna.2012.10.022.

S. Ghaffari, S. A. Chandorkar, S. Wang, E. J. Ng, C. H. Ahn, V. Hong, Y. Yang, T. W. Kenny, “Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators,” Scientific Reports, vol. 3, 3244, 2013. https://doi.org/10.1038/srep03244.

J. Segovia-Fernandez, M. Cremonesi, C. Cassella, A. Frangi, G. Piazza, “Anchor Losses in AlN Contour Mode Resonators,” J. Microelectromech. Syst., vol. 24, no. 2, pp. 265–275, 2015. https://doi.org/10.1109/JMEMS.2014.2367418.

N. K. Kuo et al., “Micromachined sapphire GHz lateral overtone bulk acoustic resonators transduced by aluminum nitride,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) Proceedings, 2012, pp. 27–30. https://doi.org/10.1109/MEMSYS.2012.6170085.

S. Gong, N.-K. Kuo, G. Piazza, “A 1.75 GHz piezoelectrically-transduced SiC lateral overmoded bulk acoustic-wave resonator,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference TRANSDUCERS'11 Proceedings, 2011, pp. 922–925. https://doi.org/10.1109/TRANSDUCERS.2011.5969701.

L. W. Hung, C. T. C. Nguyen, “Capacitive-piezoelectric AlN resonators with Q>12,000,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems Proceedings, Cancun, 2011, pp. 173–176. https://doi.org/10.1109/MEMSYS.2011.5734389

J. Zou, “High quality factor Lamb wave resonators,” EECS Department University of California, Berkeley Technical Report No. UCB/EECS-2014-217, December 15, 2014. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-217.html. [Accessed: 28-Sep-2019].

L. Popa, D. Weinstein, “Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators,” in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems Proceedings, 2013, pp. 2461–2464.

G. Piazza, P. J. Stephanou, A. P. Pisano, “One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators for Mechanical Signal Processing,” vol. 51, no. 11–12, pp.1596–1608, 2007. https://doi.org/10.1016/j.sse.2007.09.037

S. Gong, N.-K. Kuo, G. Piazza, “GHz AlN lateral overmoded bulk acoustic wave resonators with a f•Q of 1.17×1013,” in 2011 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum Proceedings, 2011, pp. 1–5. https://doi.org/10.1109/FCS.2011.5977846.

C. Tu, J. E.-Y. Lee, “A semi-analytical modeling approach for laterally-vibrating thin-film piezoelectric-on-silicon micromechanical resonators,” J. Micromech. Microeng., vol. 25, no. 11, 115020. https://doi.org/10.1088/0960-1317/25/11/115020.

C. Zuo, J. V. Der Spiegel, G. Piazza, “1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Proceedings, vol. 57, no. 1, 2010, pp. 82–87. https://doi.org/10.1109/TUFFC.1382.

M. Rinaldi, C. Zuniga, G. Piazza, “5-10 GHz AlN Contour-Mode Nanoelectromechanical Resonators,” in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems Proceedings, 2009, pp. 916–919. https://doi.org/10.1109/MEMSYS.2009.4805533.

A. V. Nasedkin, “Some finite element methods and algorithms for solving acousto-piezoelectric problems,” in Piezoceramic materials and devices, I. A. Parinov., Ed. New York: NovaScience Publishers, 2010, pp. 177–218.

V. Akopyan, A. Solov’ev, I. Parinov, S. Shevtsov, Definition of constants for piezoceramic materials, 1st ed. New York, 2010.

J. Zou, C.-M. Lin, C. S. Lam, A. P. Pisano, “Transducer design for AlN Lamb wave resonators,” J. Appl. Phys., vol. 121, no. 15, 154502, 2017. https://doi.org/10.1063/1.4979914.

M. Rais-Zadeh et al., “Gallium Nitride as an Electromechanical Material,” J. Microelectromech. Syst., vol. 23, no. 6, pp. 1252–1271, 2014. https://doi.org/10.1109/JMEMS.2014.2352617

M. Yu. Dvoesherstov, V. I. Cherednik, S. I. Bosov, I. Ya. Orlov, O. V. Rudenko, “Numerical and experimental analysis of the parameters of an electroacoustic thin-film microwave resonator,” Acoust. Phys., vol. 59, no. 5, pp. 513–520, 2013. https://doi.org/10.1134/S1063771013050072.

DOI: https://doi.org/10.33180/InfMIDEM2020.303


  • There are currently no refbacks.

Copyright (c) 2020 Pavel Marinushkin, Alexey Levitsky, Fyodor Zograf, Valentina Bakhtina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.