Multi-Objective Optimization Phase-Shift Control Strategy for Dual-Active-Bridge Isolated Bidirectional DC-DC Converter

Xiaodong Xu, Guangqing Bao, Ming Ma, Yuewu Wang

Abstract


The dual-active-bridge isolated bidirectional DC-DC converter (DAB-IBDC) is a crucial device for galvanic isolation, voltage conversion, power transfer, and buses connection in the DC power conversion systems. Phase-shift modulation is an effective method to improve DAB-IBDC performance. However, the phase-shift control strategies in the existing literatures mainly optimize the single characteristic of DAB-IBDC. In this paper, to realize a comprehensive optimization for DAB-IBDC performances, reducing high-frequency-link (HFL) reactive power, reducing current stress and improving efficiency simultaneously, a multi-objective optimization strategy based on dual-phase-shift (DPS) control is proposed. The power characterization, current stress and power loss in DAB-IBDC are investigated, and the control principle and framework of proposed multi-objective optimization DPS control strategy is described. The representative experiments in DAB-IBDC prototype are presented to verify correctness and superiority of the proposed strategy.

Keywords


dual-active-bridge; multi-objective optimization; DPS control strategy; electrical performance

Full Text:

PDF

References


T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guer-rero, “DC microgrids – part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891, Jul. 2016.

https://doi.org/10.1109/TPEL.2015.2478859

D. Liu, Y. Wang, F. Deng, and Z. Chen, “Balanced power device currents based modulation strategy for full-bridge three-level DC/DC converter,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 2008–2022, Feb. 2020.

https://doi.org/10.1109/TPEL.2019.2918271

M. Mojibi and M. Radmehr, “Reliability evaluation of buck converter based on thermal analysis,” Inf. MIDEM, vol. 48, no. 4, pp. 217–227, 2018.

https://doi.org/10.33180/InfMIDEM2018.404

S. Ramasamy, I. R. Chandran, and C. Nallaperumal, “A High Voltage Gain Multiport Zeta-Zeta Con-verter for Renewable Energy Systems,” Inf. MIDEM, vol. 50, no. 3, pp. 215–230, 2020.

https://doi.org/10.33180/InfMIDEM2020.306

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan, and P. Bauer, “A state-space approach to modelling DC distribution systems,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 943–950, Jan. 2018.

https://doi.org/10.1109/TPWRS.2017.2691547

Y. Wang, Q. Song, Q. Sun, B. Zhao, J. Li, and W. Liu, “Multilevel MVDC link strategy of high-frequency-link DC transformer based on switched capacitor for MVDC power distribution,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2829–2835, Apr. 2017.

https://doi.org/10.1109/TIE.2016.2643622

B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091–4106, Aug. 2014.

https://doi.org/10.1109/TPEL.2013.2289913

S. P. Engel, M. Stieneker, N. Soltau, S. Rabiee, H. Stagge, and R. W. D. Doncker, “Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids,” IEEE Trans. Power Elec-tron., vol. 30, no. 1, pp. 124–137, Jan. 2015.

https://doi.org/10.1109/TPEL.2014.2310656

X. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer technologies and their ap-plication in power distribution systems,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 186–198, Sep. 2013.

https://doi.org/10.1109/JESTPE.2013.2277917

Y. Wang, Q. Song, B. Zhao, J. Li, Q. Sun, and W. Liu, “Analysis and optimisation of modulation strategy based on dual-phase-shift for modular multilevel high-frequency-link DC transformer in medium-voltage DC distribution network,” IET Power Electron., vol. 11, no. 2, pp. 253–261, 2018.

https://doi.org/10.1049/iet-pel.2016.0857

X. Xiang, X. Zhang, T. Luth, M. M. C. Merlin, and T. C. Green, “A compact modular multilevel DC–DC converter for high step-ratio MV and HV use,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7060–7071, Sep. 2018.

https://doi.org/10.1109/TIE.2018.2793249

K. Zhang, Z. Shan, and J. Jatskevich, “Large- and small-signal average-value modeling of dual-active-bridge DC–DC converter considering power losses,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1964–1974, Mar. 2017.

https://doi.org/10.1109/TPEL.2016.2555929

Y. Wang et al., “A multiple modular isolated DC/DC converter with bidirectional fault handling and efficient energy conversion for DC distribu-tion network,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 11502–11517, Nov. 2020.

https://doi.org/10.1109/TPEL.2020.2985232

S. Chowdhury, P. W. Wheeler, C. Gerada, and C. Patel, “Model predictive control for a dual-active bridge inverter with a floating bridge,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5558–5568, Sep. 2016.

https://doi.org/10.1109/TIE.2016.2564949

J. Riedel, D. G. Holmes, B. P. McGrath, and C. Teixeira, “ZVS soft switching boundaries for dual active bridge DC–DC converters using frequency domain analysis,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 3166–3179, Apr. 2017.

https://doi.org/10.1109/TPEL.2016.2573856

J. D. Páez, D. Frey, J. Maneiro, S. Bacha, and P. Dworakowski, “Overview of DC–DC converters dedicated to HVDC grids,” IEEE Trans. Power De-liv., vol. 34, no. 1, pp. 119–128, Feb. 2019.

https://doi.org/10.1109/TPWRD.2018.2846408

X. Li and Y. Li, “An optimized phase-shift modula-tion for fast transient response in a dual-active-bridge converter,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2661–2665, Jun. 2014.

https://doi.org/10.1109/TPEL.2013.2294714

B. Zhao, Q. Song, W. Liu, and Y. Zhao, “Transient DC bias and current impact effects of high-frequency-isolated bidirectional DC–DC converter in practice,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3203–3216, Apr. 2016.

https://doi.org/10.1109/TPEL.2015.2445831

N. Hou, W. Song, and M. Wu, “Minimum-current-stress scheme of dual active bridge DC–DC con-verter with unified phase-shift control,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8552–8561, Dec. 2016.

https://doi.org/10.1109/TPEL.2016.2521410

B. Zhao, Q. Song, W. Liu, and W. Sun, “Current-stress-optimized switching strategy of isolated bi-directional DC–DC converter with dual-phase-shift control,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4458–4467, Oct. 2013.

https://doi.org/10.1109/TIE.2012.2210374

G. Oggier, G. O. García, and A. R. Oliva, “Modula-tion strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range,” IEEE Trans. Power Elec-tron., vol. 26, no. 4, pp. 1228–1236, Apr. 2011.

https://doi.org/10.1109/TPEL.2010.2072966

A. Rodríguez, A. Vázquez, D. G. Lamar, M. M. Hernando, and J. Sebastián, “Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 790–804, Feb. 2015.

https://doi.org/10.1109/TPEL.2014.2309853

F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for au-tomotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745–2760, Jul. 2012.

https://doi.org/10.1109/TIE.2011.2112312

B. Zhao, Q. Song, and W. Liu, “Efficiency charac-terization and optimization of isolated bidirec-tional DC–DC converter based on dual-phase-shift control for DC distribution application,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1711–1727, Apr. 2013.

https://doi.org/10.1109/TPEL.2012.2210563

H. Bai, Z. Nie, and C. C. Mi, “Experimental compar-ison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional DC–DC converters,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1444–1449, Jun. 2010.

https://doi.org/10.1109/TPEL.2009.2039648

A. K. Jain and R. Ayyanar, “PWM control of dual active bridge: Comprehensive analysis and exper-imental verification,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1215–1227, Apr. 2011.

https://doi.org/10.1109/TPEL.2010.2070519

S. S. Muthuraj, V. K. Kanakesh, P. Das, and S. K. Panda, “Triple phase shift control of an LLL tank based bidirectional dual active bridge converter,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 8035–8053, Oct. 2017.

https://doi.org/10.1109/TPEL.2016.2637506

A. Taylor, G. Liu, H. Bai, A. Brown, P. M. Johnson, and M. McAmmond, “Multiple-phase-shift control for a dual active bridge to secure zero-voltage switching and enhance light-load performance,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4584–4588, Jun. 2018.

https://doi.org/10.1109/TPEL.2017.2769638

Y. Wang, Q. Song, B. Zhao, J. Li, Q. Sun, and W. Liu, “Quasi-square-wave modulation of modular multilevel high-frequency DC converter for medi-um-voltage DC distribution application,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7480–7495, Sep. 2018.

https://doi.org/10.1109/TPEL.2017.2772833

I. A. Gowaid, G. P. Adam, S. Ahmed, D. Holliday, and B. W. Williams, “Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5439–5457, Oct. 2015.

https://doi.org/10.1109/TPEL.2014.2377719

Y. Yan, H. Bai, A. Foote, and W. Wang, “Securing full-power-range zero-voltage switching in both steady-state and transient operations for a dual-active-bridge-based bidirectional electric vehicle charger,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7506–7519, Jul. 2020.

https://doi.org/10.1109/TPEL.2019.2955896

Q. Gu, L. Yuan, J. Nie, J. Sun and Z. Zhao, “Current stress minimization of dual-active-bridge DC-DC converter within the whole operating range,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 129–142, Mar. 2019.

https://doi.org/10.1109/JESTPE.2018.2886459

O. M. Hebala, A. A. Aboushady, K. H. Ahmed and I. Abdelsalam, “Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4468–4478, Jun. 2019.

https://doi.org/10.1109/TIE.2018.2860535




DOI: https://doi.org/10.33180/InfMIDEM2021.303

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Xiaodong Xu, Guangqing Bao, Ming Ma, Yuewu Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.