Memristor based Majority Logic Adders for Error Resilient Image Processing Applications

Nithya Natarajan, Paramasivam Kuppusamy

Abstract


Approximate Computing (AC) enables energy-efficient and high-performance computation for error-resilient applications such as data analytics, image processing, and multimedia. With the growing demand for low-power, high-density storage in Artificial Intelligence and Machine learning applications, researchers are exploring emerging technologies like FinFETs, memristors, Carbon Nano Tube FET(CNTFET), and Quantum-dot Cellular Automata (QCA) to mitigate the constraints of CMOS scaling. This paper proposes an efficient majority logic design using hybrid memristor-CMOS technology for low-power arithmetic applications. A power-efficient 1-bit adder, comprising three majority gates and one inverter, is designed and compared with existing memristor-based adders. Three Approximate Adder designs such as MAA1, MAA2, and MAA3 are implemented in 8-bit fully approximate ripple carry structure and 8-bit error-tolerant ripple carry structure, integrating four approximate and four accurate adders. Circuit performance, including power and delay, is analyzed using Cadence Virtuoso, where MAA1 achieves the lowest Power-Delay Product (PDP) in both structures. Image quality metrics, assessed using MATLAB with 8-bit pixel depth images, indicate that MAA3 attains the highest Peak Signal-to-Noise Ratio (PSNR) in the fully approximate structure. Error analysis using Verilog coding shows that the proposed MAA2 design achieves a 24.12% error rate reduction in the error-tolerant structure compared to its fully approximate counterpart, demonstrating its efficiency in balancing accuracy and power consumption.


Keywords


memristor; majority logic; approximate computing; image processing; HRTEM image

Full Text:

PDF

References


A.M. Dalloo, A J. Humaidi, A.K. Al Mhdawi and H. Al-Raweshidy, “Approximate Computing: Con-cepts, Architectures, Challenges, Applications, and Future Directions,” IEEE Access, vol. 12, pp. 146022-146088, 2024, https://doi: 10.1109/ ACCESS.2024.3467375.

J.Stremfelj, F. Smole, “Nanotechnology and Nano-science – From Past Breakthroughs to Future Prospects,” Inf. Midem-J. Microelectron. Electron. Compon. Mater.,vol.51, no., pp. 25-48, 2021, https://doi.org/10.33180/InfMIDEM2021.102

L. Chua, “Memristor-The missing circuit element,” IEEE Transactions on Circuit Theory, vol. 18, no.5, pp. 507-519,1971, https://doi: 10.1109 /TCT.1971.1083337.

D.Yadav ,A.K. Dwivedi ,S.. Verma and D.K. Avas-thi, “Transition metal oxide based resistive ran-dom-access memory: An overview of materials and device performance enhancement tech-niques,” Journal of Science: Advanced Materials and Devices, vol. 9, no.4, 2024, https://doi.org/10.1016/j.jsamd.2024.100813.

R. K. Tan et al., “Examination of Resistive Switching Energy of Some Nonlinear Dopant Drift Memristor Models," Inf. Midem-J. Microelectron. Electron. Compon. Mater., vol. 54, no. 1, pp. 25–38, 2024 https://doi.org/10.33180/InfMIDEM2024.103

D.Panda, P.P.Sahu and T.Y.Tseng , “A Collective Study on Modeling and Simulation of Resistive Random Access Memory,” Nanoscale Research Letters, vol. 13, no.8,2018, https://doi.org/10.1186/s11671-017-2419-8.

N.Kaushik and B.Srinivasu , “High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks”, IEEE Transactions on Nanotechnology, vol. 23, pp. 748-757, 2024, https://doi: 10.1109/TNANO.2024.3487223.

C.K. Jha , K. Qayyum, K.Coskun, S. Singh S,M. Hassan, R. Leupers , F. Merchant and R.Drechsler, “veriSIMPLER: An Automated For-mal Verification Methodology for SIMPLER MAGIC Design Style Based In-Memory Compu-ting,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no.9, pp. 1-11,2024, https://doi:10.1109/TCSI.2024.3424682.

K.A. Ali, M. Rizk, A. Baghdadi, J.P. Diguet and J. Jomaah, “Hybrid Memristor–CMOS Implementa-tion of Combinational Logic Based on X-MRL,” Electronics, vol.10, no.9, 2021, https://doi.org/10.3390/electronics10091018.

A.Singh, “Design and Analysis of Memristor-based Combinational Circuits,” IETE Journal of Research, vol.66, no.2, pp. 182–191,2018, https://doi.org/10.1080/03772063.2018.1486741.

A. K. Maan, D. A. Jayadevi and A. P. James, "A survey of memristive threshold logic cir-cuits", IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1734-1746, 2017, https://ieeexplore.ieee.org/document/7464347

S. Kvatinsky, M. Ramadan, E.G. Friedman and A. Kolodny, “VTEAM: a general model for voltage-controlled memristors,” IEEE Trans. Circuits Syst. II Express Briefs , vol.62,no. 8 pp. 786–90 ,2015, doi: 10.1109/TCSII.2015.2433536.

Y. Zhou, Y. Li , L. Xu , S. Zhong , R. Xu and X.A. Miao, “hybrid memristor-CMOS XOR gate for non-volatile logic computation,” Physica Status Solidi (a), vol. 213, no.4, pp.1050–1054,2015, https://doi.org/10.1002/pssa.201532872.

T. Singh, “Hybrid Memristor-CMOS (MeMOS) based logic gates and adder circuits,” X: 1–10, 2015, http://arxiv.org/abs/1506.06735.

K.Cho K, S.J Lee S and K. Eshraghian, “Memristor-CMOS logic and digital computational compo-nents,” Microelectronics Journal, vol. 46, no.3, pp. 214–220, 2015, https://doi: 10.1016/j.mejo.2014.12.006.

M. Teimoori ,A. Ahmadi ,S. Alirezaee and M.Ahmadi , “A novel hybrid CMOS-memristor logic circuit using Memristor Ratioed Logic,” In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2016. https://doi:10.1109/ccece.2016.7726661

M. Khalid, S. Mukhtar, M.J. Siddique and S.F. Ahmed, “Memristor based full adder circuit for better performance,” Trans. Electr. Electron. Ma-ter. Vol.20, pp.403–10 ,2019, https://doi.org/10.1007/s42341-019-00135-5.

G. Liu, S. Shen, P. Jin, G. Wang and Y. Liang, “Design of memristor-based combinational logic circuits,” Circuits Syst. Signal Process., vol. 40, ,pp. 5825–5846 ,2021, https://doi.org/10.1007/s00034-021-01770-1

M.H. Maruf, M.S.I. Ashrafi, A.S.M. Shihavuddin and S.I. Ali, “Design and comparative analysis of memristor-based transistor-less combinational logic circuits,” Int. J. Electron., Vol.109, pp.1291–1306,2022, https://doi.org/10.1080/00207217. 2021.1966672.

B. Su, J. Cai, Y. Zhang, Y. Wang, S. Wang and K. Wen, “A 1T2M memristor-based logic circuit and its applications,” Microelectronics J. vol.132, no.105674, 2023,https://doi.org/10.1016/ j.mejo.2022.105674

S.S. Ghodke, S. Kumar, S. Yadav, N.S. Dhakad and S. Mukherjee, “Combinational logic circuits based on a power- and area-efficient memristor with low variability,” J. Comput. Electron. Vol.23, pp. 131–141 ,2024, https://doi.org/10.1007/s10825-023-02117-6

S. Guitarra , R. Taco, M.. Gavilánez ,J. Yépez and U. Espinoza , “ Assessment of a universal logic gate and a full adder circuit based on CMOS-memristor technology,” Solid-State Electronics, vol. 207, no.108704,2023, https://doi.org/10.1016/j.sse.2023.108704.

M. Nawaria, S. Kumar, M.K. Gautam, N.S. Dhakad, R. Singh, S. Singhal et al., “Memristor-inspired digital logic circuits and comparison with 90-/180-nm CMOS technologies,” IEEE Trans. Electron. Dev. vol.71, pp. 301–7 ,2024, https://doi: 10.1109/TED.2023.3278625.

Shalini, K. Singh , “High Performance and Scala-ble Hybrid Memristor-CMOS Based Full Adder,” IETE Journal of Research, vol. 70, no.7, pp.6412–6422, 2023, https://doi.org/10.1080/03772063.2023.2297362.

Z. Tao, L. Wang, C. Sun, X. Wan, X. Liu, Z. Cai and X. Lian, “Design of memristor-based combi-national logic circuits,” IEICE Electron. Express, vol. 21, no.3, pp. 20230587–20230587,2024, https://doi.org/10.1587/elex.21.20230587

L. Xiaojuan ,S. Chuanyang and T. Zeheng , “Real-ization of complete boolean logic and combina-tional logic functionalities on a memristor based universal logic circuit,” Chinese Journal of Elec-tronics, vol. 33, no.4, pp.1–10, 2023, https://cje.ejournal.org.cn/article/doi/10.23919/ cje.2023.00.091

H.S. Rasheed and R.P. Nelapati, “Design of Hybrid CMOS-Memristor Combinational Circuits: Max-imizing Efficiency with Low Power, Area, and De-lay,” Circuits Syst Signal Process, 2024,https://doi.org/10.1007/s00034-024-02935-4

V.Gupta ,D. Mohapatra ,A. Raghunathan and K. Roy , “Low-power digital signal processing using approximate adders,” IEEE Transactions on Com-puter Aided Design of Integrated Circuits and Systems, vol.32, no.1, pp.124–37,2013, https://doi.10.1109/TCAD.2012.2217962.

M. Mirzaei and S. Mohammadi, “Process varia-tion-aware approximate full adders for impreci-sion-tolerant applications,” Computers & Electri-cal Engineering, vol. 87, no.106761,2020, https://doi.org/10.1016/j.compeleceng.2020. 106761.

A. Tirupathireddy ,M. Sarada and A. Srinivasulu , “Energy-efficient approximate adders for DSP applications,” Analog Integr Circ Sig Process., vol. 107, pp. 649–657, 2021, https://doi.org/10.1007/s10470-020-01768-w.

S.F. Deymad, N. Shiri and F. Pesaran, “Realized High-Performance Swing Compensator Approx-imate Reversible Full Adders Using Gate Diffusion Input Technique,” Arabian Journal for Science and Engineering, vol. 49, pp. 7079–7094,2024, https://doi.org/10.1007/s13369-023-08637-4.

K.M. Roodbali , K. Abiri and E. Hassanli, “Highly efficient low-area gate-diffusion-input-based ap-proximate full adders for image processing com-puting,” Journal of Supercomputing, vol. 80,pp. 8129–8155,2024, https://doi.org/ 10.1007/s11227-023-05768-1.

N.Shiri, A.Sadeghi and M. Mahmood Rafiee, “High-efficient and error-resilient gate diffusion input-based approximate full adders for complex multistage rapid structures,” Computers and Electrical Engineering, vol. 109,pp.108776,2023, https://doi.org/10.1016/j.compelceng.2023. 108776.

M.C. Parameshwara and N. Maroof, “An Area-Efficient Majority Logic-Based Approximate Ad-ders with Low Delay for Error-Resilient Applica-tions,” Circuits Systems and Signal Processing , vol.41, pp.4977–4997,2022, https://doi.org/10.1007/s00034-022-02014-6

S. Angizi , H. Jiang ,R.F. DeMara, J. Han and D. Fan, “Majority-Based Spin-CMOS Primitives for Approximate Computing,” IEEE Transactions on Nanotechnology, vol. 17, no.4, pp. 795-806, 2018, https://doi: 10.1109/TNANO.2018.2836918

S.Rangaprasad and V. K. Joshi, “A Fully Non-Volatile Reconfigurable Magnetic Arithmetic Log-ic Unit Based on Majority Logic,” IEEE Access, vol.11, pp.118944-118961, 2023, https://doi: 10.1109/ACCESS.2023.3327261.

S. Muthulakshmi , Chandra Sekhar Dash and S.R.S. Prabaharan , “Memristor augmented ap-proximate adders and subtractors for image pro-cessing applications: An approach,” AEU - Inter-national Journal of Electronics and Communica-tions, vol. 91,pp. 91-1022018,https://doi.org/10.1016/j.aeue.2018.05.003.

N. Nithya , K. Paramasivam, “MINI Logic 1-Bit Adder: A Comparison with Hybrid NMOS-Memristor-Logic Styles Using Ta2O5/Al2O3 Based RRAM Device,” Advances in Electrical and Computer Engineering, vol. 24,no. 3, pp. 33-44,2024, https://doi:10.4316/AECE.2024.03004.

Image Database Source: https://ccia.ugr.es/cvg/CG/base.htm




DOI: https://doi.org/10.33180/InfMIDEM2025.404

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nithya N

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.